Abstract

The proposed work introduces time-captured Raman and terahertz spectroscopic analyses as orthogonal probes of intramolecular and intermolecular modes in biomolecular structures. The work focuses on glucose given the complexity and dynamics of its anomeric conversion and crystallization. The Raman analyses capture the dynamics of its intramolecular modes – revealing conversion between α and β anomers. At the same time, the terahertz analyses capture the dynamics of its intermolecular modes – showing an evolution from amorphous to crystalline morphology. It is shown that time-captured Raman and terahertz spectroscopy together render a more complete depiction, and deeper understanding, of the biomolecular structure of glucose.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of highly efficient terahertz radiation in ferromagnetic heterostructures and its application in spintronic terahertz emission microscopy (STEM)

Fengwei Guo, Chandan pandey, Chun Wang, Tianxiao Nie, Lianggong Wen, Weisheng Zhao, Jungang Miao, Li Wang, and Xiaojun Wu
OSA Continuum 3(4) 893-902 (2020)

Dynamically selective control of dual-mode electromagnetically induced transparency in terahertz metal-graphene metamaterial

Kun Zhang, Yan Liu, Hongwei Wu, Feng Xia, and Weijin Kong
OSA Continuum 3(3) 505-514 (2020)

Electromagnetically induced transparency (EIT) amplitude noise spectroscopy

Ben Whitenack, Devan Tormey, Michael Crescimanno, Andrew C. Funk, and Shannon O’Leary
OSA Continuum 3(2) 325-333 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
    [Crossref]
  2. X. Han, S. Yan, Z. Zang, D. Wei, H.-L. Cui, and C. Du, “Label-free protein detection using time-domain spectroscopy,” Biomed. Opt. Express 9(3), 994–1005 (2018).
    [Crossref]
  3. B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
    [Crossref]
  4. K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
    [Crossref]
  5. P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
    [Crossref]
  6. L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
    [Crossref]
  7. X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
    [Crossref]
  8. L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
    [Crossref]
  9. E. P. J. Parrott and J. A. Zeitler, “Terahertz time-domain and low-frequency Raman spectroscopy of organic materials,” Appl. Spectrosc. 69(1), 1–25 (2015).
    [Crossref]
  10. H. A. Wells and R. H. Atalla, “An investigation of the vibrational spectra of glucose, galactose and mannose,” J. Mol. Struct. 224, 385–424 (1990).
    [Crossref]
  11. S. Saito and I. Ohmine, “Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure,” J. Chem. Phys. 125(8), 084506 (2006).
    [Crossref]
  12. A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
    [Crossref]
  13. F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
    [Crossref]
  14. A. Maharadika, B. B. Andriana, A. B. Susanto, H. Matsuyoshi, and H. Sato, “Development of quantitative analysis techniques for saccharification reactions using Raman spectroscopy,” Appl. Spectrosc. 72(11), 1606–1612 (2018).
    [Crossref]
  15. G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
    [Crossref]
  16. S. Pommé and B. C. Marroyo, “Improved peak shape fitting in α spectra,” Appl. Radiat. Isot. 96, 148–153 (2015).
    [Crossref]
  17. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref]
  18. L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
    [Crossref]
  19. H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
    [Crossref]
  20. M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
    [Crossref]
  21. S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
    [Crossref]
  22. C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
    [Crossref]
  23. S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
    [Crossref]
  24. Y. Roh, S.-H. Lee, B. Kang, J. W. Wu, B.-K. Ju, and M. Seo, “Terahertz optical characteristics of two types of metamaterials for molecule sensing,” Opt. Express 27(13), 19042 (2019).
    [Crossref]
  25. D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
    [Crossref]
  26. X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
    [Crossref]
  27. H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
    [Crossref]
  28. S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
    [Crossref]
  29. N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
    [Crossref]
  30. M. Kačuráková and M. Mathlouthi, “FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond,” Carbohydr. Res. 284(2), 145–157 (1996).
    [Crossref]
  31. M. Mathlouthi, “Laser-raman spectra of D-glucose and sucrose in aqueous solution,” Carbohydr. Res. 81(2), 203–212 (1980).
    [Crossref]
  32. S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
    [Crossref]
  33. E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
    [Crossref]
  34. R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
    [Crossref]
  35. T. W. Barrett, “Laser Raman spectra of mono-, oligo- and polysaccharides in solution,” Spectrochim. Acta 37(4), 233–239 (1981).
    [Crossref]
  36. K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
    [Crossref]
  37. P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
    [Crossref]
  38. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
    [Crossref]
  39. K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
    [Crossref]
  40. H.-B. Liu and X.-C. Zhang, “Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy,” Chem. Phys. Lett. 429(1-3), 229–233 (2006).
    [Crossref]
  41. L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
    [Crossref]
  42. M. Takahashi and Y. Ishikawa, “Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate,” Chem. Phys. Lett. 642, 29–34 (2015).
    [Crossref]
  43. M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
    [Crossref]
  44. Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
    [Crossref]
  45. B. Makower and W. B. Dye, “Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose,” J. Agric. Food Chem. 4(1), 72–77 (1956).
    [Crossref]
  46. X. Yuan and R. A. Mayanovic, “An empirical study on Raman peak fitting and its application to Raman quantitative research,” Appl. Spectrosc. 71(10), 2325–2338 (2017).
    [Crossref]
  47. A. Broido, Y. Houminer, and S. Patai, “Pyrolytic reactions of carbohydrates. Part I. Mutarotation of molten D-glucose,” J. Chem. SOC. (B), 411–414 (1966).
  48. A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry (3rd ed.) (Macmillan Publishing Co., 1985).
  49. S. Srisa-nga, The effect of the mutarotation reaction on the crystallization of glucose monohydrate (Suranaree University of Technology, 2005).
  50. S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
    [Crossref]
  51. M. V. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [Crossref]
  52. R. T. Hall, D. Vrabec, and J. M. Dowling, “A high-resolution, far infrared double-beam lamellar grating interferometer,” Appl. Opt. 5(7), 1147–1158 (1966).
    [Crossref]
  53. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
    [Crossref]
  54. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
    [Crossref]

2019 (4)

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Y. Roh, S.-H. Lee, B. Kang, J. W. Wu, B.-K. Ju, and M. Seo, “Terahertz optical characteristics of two types of metamaterials for molecule sensing,” Opt. Express 27(13), 19042 (2019).
[Crossref]

P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
[Crossref]

2018 (8)

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

X. Han, S. Yan, Z. Zang, D. Wei, H.-L. Cui, and C. Du, “Label-free protein detection using time-domain spectroscopy,” Biomed. Opt. Express 9(3), 994–1005 (2018).
[Crossref]

A. Maharadika, B. B. Andriana, A. B. Susanto, H. Matsuyoshi, and H. Sato, “Development of quantitative analysis techniques for saccharification reactions using Raman spectroscopy,” Appl. Spectrosc. 72(11), 1606–1612 (2018).
[Crossref]

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

2017 (6)

G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
[Crossref]

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

X. Yuan and R. A. Mayanovic, “An empirical study on Raman peak fitting and its application to Raman quantitative research,” Appl. Spectrosc. 71(10), 2325–2338 (2017).
[Crossref]

2016 (5)

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

2015 (5)

S. Pommé and B. C. Marroyo, “Improved peak shape fitting in α spectra,” Appl. Radiat. Isot. 96, 148–153 (2015).
[Crossref]

E. P. J. Parrott and J. A. Zeitler, “Terahertz time-domain and low-frequency Raman spectroscopy of organic materials,” Appl. Spectrosc. 69(1), 1–25 (2015).
[Crossref]

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
[Crossref]

M. Takahashi and Y. Ishikawa, “Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate,” Chem. Phys. Lett. 642, 29–34 (2015).
[Crossref]

2014 (3)

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

2013 (2)

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

2012 (1)

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

2011 (1)

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

2009 (1)

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

2008 (1)

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

2007 (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

2006 (2)

H.-B. Liu and X.-C. Zhang, “Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy,” Chem. Phys. Lett. 429(1-3), 229–233 (2006).
[Crossref]

S. Saito and I. Ohmine, “Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure,” J. Chem. Phys. 125(8), 084506 (2006).
[Crossref]

2003 (2)

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

1999 (1)

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

1997 (1)

R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
[Crossref]

1996 (1)

M. Kačuráková and M. Mathlouthi, “FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond,” Carbohydr. Res. 284(2), 145–157 (1996).
[Crossref]

1990 (1)

H. A. Wells and R. H. Atalla, “An investigation of the vibrational spectra of glucose, galactose and mannose,” J. Mol. Struct. 224, 385–424 (1990).
[Crossref]

1989 (1)

1981 (1)

T. W. Barrett, “Laser Raman spectra of mono-, oligo- and polysaccharides in solution,” Spectrochim. Acta 37(4), 233–239 (1981).
[Crossref]

1980 (1)

M. Mathlouthi, “Laser-raman spectra of D-glucose and sucrose in aqueous solution,” Carbohydr. Res. 81(2), 203–212 (1980).
[Crossref]

1966 (1)

1956 (1)

B. Makower and W. B. Dye, “Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose,” J. Agric. Food Chem. 4(1), 72–77 (1956).
[Crossref]

Abdul-Karim, N.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Andriana, B. B.

Andrianov, V. M.

R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
[Crossref]

Ariese, F.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Atalla, R. H.

H. A. Wells and R. H. Atalla, “An investigation of the vibrational spectra of glucose, galactose and mannose,” J. Mol. Struct. 224, 385–424 (1990).
[Crossref]

Baranska, M.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Barrett, T. W.

T. W. Barrett, “Laser Raman spectra of mono-, oligo- and polysaccharides in solution,” Spectrochim. Acta 37(4), 233–239 (1981).
[Crossref]

Ben-Jaber, S.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Bonn, M.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Born, B.

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Boyaci, I. H.

K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
[Crossref]

Broido, A.

A. Broido, Y. Houminer, and S. Patai, “Pyrolytic reactions of carbohydrates. Part I. Mutarotation of molten D-glucose,” J. Chem. SOC. (B), 411–414 (1966).

Burlet, C.

G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
[Crossref]

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Cernat, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

Chang, Y.

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Chen, L.

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

Chen, M. C.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Chen, X.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Chen, Z.

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Chen, Z. Y.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Choi, D.-H.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Cody, V.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Cölfen, H.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

Cortés, E.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Cui, H.-L.

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Czamara, K.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

D’Angelo, F.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Davies, A. G.

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

Descamps, M.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Ding, L.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Dowling, J. M.

Du, C.

Dudognon, E.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Dujardin, N.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Duschek, L.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

Dye, W. B.

B. Makower and W. B. Dye, “Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose,” J. Agric. Food Chem. 4(1), 72–77 (1956).
[Crossref]

Ebbinghaus, S.

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Exter, M. V.

Fan, W. H.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Fan, W.-H.

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

Fang, H.

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Fattinger, Ch.

Ferré-D’Amaré, A. R.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Fischer, B. M.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Fu, W.

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Fu, X.

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Gebauer, D.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

George, D. K.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Gerber, D.

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Grechko, M.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Grischkowsky, D.

Gruebele, M.

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Grzelczak, M. P.

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

Guinet, Y.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Hall, R. T.

Han, X.

Hao, S.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Hasegawa, T.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Hasunuma, T.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Hatakeyam, S.

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

Havenith, M.

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Hayashi, M.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Heathcock, C. H.

A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry (3rd ed.) (Macmillan Publishing Co., 1985).

Hédoux, A.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Helm, H.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

Hotokka, M.

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

Houminer, Y.

A. Broido, Y. Houminer, and S. Patai, “Pyrolytic reactions of carbohydrates. Part I. Mutarotation of molten D-glucose,” J. Chem. SOC. (B), 411–414 (1966).

Hu, F.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Huh, Y.-M.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Ilaslan, K.

K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
[Crossref]

Imai, Y.

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

Ishikawa, Y.

M. Takahashi and Y. Ishikawa, “Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate,” Chem. Phys. Lett. 642, 29–34 (2015).
[Crossref]

Ito, H.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Jeoung, K.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Jepsen, P. U.

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Ji, Y. B.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Ju, B.-K.

Jung, S.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Kacuráková, M.

M. Kačuráková and M. Mathlouthi, “FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond,” Carbohydr. Res. 284(2), 145–157 (1996).
[Crossref]

Kaczor, A.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Kalanoor, B. S.

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Kang, B.

Kim, S. J.

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Kobayashi, Y.

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

Koch, M.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

Kochan, K.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Kojic, D.

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

Kojima, S.

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

Kondo, A.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Kritikos, A.

P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
[Crossref]

Kumar, S.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Kwon, O. S.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Lee, D.-K.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Lee, K.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Lee, S.-H.

Li, H.

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

Li, T.

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

Lin, C.-C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Linfield, E. H.

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

Liu, H.

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Liu, H.-B.

H.-B. Liu and X.-C. Zhang, “Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy,” Chem. Phys. Lett. 429(1-3), 229–233 (2006).
[Crossref]

Liu, Y.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Luo, Y.

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Maharadika, A.

Maier, S. A.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Majzner, K.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Makower, B.

B. Makower and W. B. Dye, “Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose,” J. Agric. Food Chem. 4(1), 72–77 (1956).
[Crossref]

Malek, K.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Marchewka, M. K.

R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
[Crossref]

Markelz, A. G.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Marroyo, B. C.

S. Pommé and B. C. Marroyo, “Improved peak shape fitting in α spectra,” Appl. Radiat. Isot. 96, 148–153 (2015).
[Crossref]

Martin, F. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Mathlouthi, M.

M. Kačuráková and M. Mathlouthi, “FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond,” Carbohydr. Res. 284(2), 145–157 (1996).
[Crossref]

M. Mathlouthi, “Laser-raman spectra of D-glucose and sucrose in aqueous solution,” Carbohydr. Res. 81(2), 203–212 (1980).
[Crossref]

Matsuyoshi, H.

Mayanovic, R. A.

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Meinander, N.

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

Miao, X.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Miao, Y.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Min, W.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Mori, T.

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

Mukherjee, R.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Mulè, G.

G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
[Crossref]

Nagata, Y.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Niessen, K. A.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Nowak, K.

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

Oh, S. J.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Ohmine, I.

S. Saito and I. Ohmine, “Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure,” J. Chem. Phys. 125(8), 084506 (2006).
[Crossref]

Oren, Z.

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Paccou, L.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Pace, J.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Pacia, M. Z.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Park, G.-S.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Park, J.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Park, W.-Y.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Parkin, I. P.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Parrott, E. P. J.

Patai, S.

A. Broido, Y. Houminer, and S. Patai, “Pyrolytic reactions of carbohydrates. Part I. Mutarotation of molten D-glucose,” J. Chem. SOC. (B), 411–414 (1966).

Peveler, W. J.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Plinski, E. F.

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

Pommé, S.

S. Pommé and B. C. Marroyo, “Improved peak shape fitting in α spectra,” Appl. Radiat. Isot. 96, 148–153 (2015).
[Crossref]

Pupeza, I.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

Qian, N.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Quesada-Cabrera, R.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Ramesh, P.

P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
[Crossref]

Roh, Y.

Ronen, M.

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Roos, Y. H.

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

Saito, S.

S. Saito and I. Ohmine, “Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure,” J. Chem. Phys. 125(8), 084506 (2006).
[Crossref]

Sato, H.

Schmidt, M.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Seo, M.

Y. Roh, S.-H. Lee, B. Kang, J. W. Wu, B.-K. Ju, and M. Seo, “Terahertz optical characteristics of two types of metamaterials for molecule sensing,” Opt. Express 27(13), 19042 (2019).
[Crossref]

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Shen, Y.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Shen, Y. C.

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

Shi, L.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Shibata, T.

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

Snell, E. H.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Söderholm, S.

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

Soltani, A.

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

Somasundaram, K.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Son, H.

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

Song, C.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Sotelo-Vazquez, C.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

Srisa-nga, S.

S. Srisa-nga, The effect of the mutarotation reaction on the crystallization of glucose monohydrate (Suranaree University of Technology, 2005).

Sterczewski, L. A.

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

Stone, N.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Streitwieser, A.

A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry (3rd ed.) (Macmillan Publishing Co., 1985).

Suh, J.-S.

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

Susanto, A. B.

Szafraniec, E.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Szlachetko, B.

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

Takahashi, M.

M. Takahashi and Y. Ishikawa, “Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate,” Chem. Phys. Lett. 642, 29–34 (2015).
[Crossref]

Tanaka, S.

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

Tang, J.

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

Tischler, Y. R.

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Tominaga, K.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Tonouchi, M.

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

Topcu, A.

K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
[Crossref]

Tsenkova, R.

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

Tsilomelekis, G.

P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
[Crossref]

Turchinovich, D.

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Umapathy, S.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Upadhya, P. C.

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

Vanbrabant, Y.

G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
[Crossref]

Verma, T.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Vrabec, D.

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Walther, M.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Wang, H. W.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Wang, K.

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Wang, M. C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Wang, Y.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Wei, D.

Wei, L.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Wei, M.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Wells, H. A.

H. A. Wells and R. H. Atalla, “An investigation of the vibrational spectra of glucose, galactose and mannose,” J. Mol. Struct. 224, 385–424 (1990).
[Crossref]

Wiercigroch, E.

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Wilk, R.

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

Willart, J.-F.

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

Wu, H.

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

Wu, J. W.

Wu, S.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Wu, Y.

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

Xi, X.

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

Xu, M.

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

Yamauchi, S.

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

Yan, L.

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Yan, S.

Yang, K.

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Yang, X.

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Yasui, M.

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

Yu, Y.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Yuan, X.

Yue, W.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Zang, Z.

Zeitler, J. A.

Zhan, H.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Zhang, F.

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Zhang, L.

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Zhang, T.

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Zhang, X.-C.

H.-B. Liu and X.-C. Zhang, “Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy,” Chem. Phys. Lett. 429(1-3), 229–233 (2006).
[Crossref]

Zhao, K.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

Zhao, Z.

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Zhbankov, R. G.

R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
[Crossref]

Zheng, Z.-P.

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

Zhou, J.

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

Zhu, J.

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

ACS Omega (1)

B. S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, and Y. R. Tischler, “New method to study the vibrational modes of biomolecules in the terahertz range based on a single-stage Raman spectrometer,” ACS Omega 2(3), 1232–1240 (2017).
[Crossref]

Am. J. Anal. Chem. (1)

S. Yamauchi, S. Hatakeyam, Y. Imai, and M. Tonouchi, “Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose,” Am. J. Anal. Chem. 04(12), 756–762 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Radiat. Isot. (1)

S. Pommé and B. C. Marroyo, “Improved peak shape fitting in α spectra,” Appl. Radiat. Isot. 96, 148–153 (2015).
[Crossref]

Appl. Spectrosc. (3)

Biomed. Opt. Express (1)

Carbohydr. Res. (3)

M. Kačuráková and M. Mathlouthi, “FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond,” Carbohydr. Res. 284(2), 145–157 (1996).
[Crossref]

M. Mathlouthi, “Laser-raman spectra of D-glucose and sucrose in aqueous solution,” Carbohydr. Res. 81(2), 203–212 (1980).
[Crossref]

S. Tanaka, D. Kojić, R. Tsenkova, and M. Yasui, “Quantification of anomeric structural changes of glucose solutions using near-infrared spectra,” Carbohydr. Res. 463, 40–46 (2018).
[Crossref]

Chem. - Asian J. (1)

F. Zhang, H. W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, “Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules,” Chem. - Asian J. 12(3), 324–331 (2017).
[Crossref]

Chem. - Eur. J. (1)

A. Soltani, D. Gebauer, L. Duschek, B. M. Fischer, H. Cölfen, and M. Koch, “Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for l-(+)-tartaric acid,” Chem. - Eur. J. 23(57), 14128–14132 (2017).
[Crossref]

Chem. Phys. (1)

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Chem. Phys. Lett. (3)

H.-B. Liu and X.-C. Zhang, “Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy,” Chem. Phys. Lett. 429(1-3), 229–233 (2006).
[Crossref]

L. A. Sterczewski, M. P. Grzelczak, K. Nowak, B. Szlachetko, and E. F. Plinski, “Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics,” Chem. Phys. Lett. 644, 45–50 (2016).
[Crossref]

M. Takahashi and Y. Ishikawa, “Terahertz vibrations of crystalline α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate,” Chem. Phys. Lett. 642, 29–34 (2015).
[Crossref]

Chem. Soc. Rev. (1)

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref]

Faraday Discuss. (1)

B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009).
[Crossref]

Food Control (1)

K. Ilaslan, I. H. Boyaci, and A. Topcu, “Rapid analysis of glucose, fructose and sucrose contents of commercial soft drinks using Raman spectroscopy,” Food Control 48, 56–61 (2015).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate THz time-domain spectroscopy of multi-layer structures,” IEEE J. Select. Topics Quantum Electron. 14(2), 392–398 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

H. Liu, L. Yan, Y. Chang, H. Fang, and T. Zhang, “Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization,” IEEE Trans. Instrum. Meas. 62(2), 315–327 (2013).
[Crossref]

Infrared Phys. Technol. (1)

K. Lee, K. Jeoung, D.-K. Lee, Y. B. Ji, M. Seo, Y.-M. Huh, J.-S. Suh, and S. J. Oh, “Study of molecular structure change of D- and L-glucose by proton irradiation using terahertz spectroscopy,” Infrared Phys. Technol. 93, 154–157 (2018).
[Crossref]

J. Agric. Food Chem. (1)

B. Makower and W. B. Dye, “Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose,” J. Agric. Food Chem. 4(1), 72–77 (1956).
[Crossref]

J. Anal. Methods Chem. (1)

L. Chen, Y. Wu, T. Li, and Z. Chen, “Collaborative penalized least squares for background correction of multiple Raman spectra,” J. Anal. Methods Chem. 2018, 9031356 (2018).
[Crossref]

J. Biol. Phys. (1)

P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Terahertz time-domain spectroscopy of glucose and uric acid,” J. Biol. Phys. 29(2/3), 117–121 (2003).
[Crossref]

J. Chem. Phys. (2)

S. Saito and I. Ohmine, “Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure,” J. Chem. Phys. 125(8), 084506 (2006).
[Crossref]

D.-H. Choi, H. Son, S. Jung, J. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, “Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy,” J. Chem. Phys. 137(17), 175101 (2012).
[Crossref]

J. Mol. Spectrosc. (1)

Z.-P. Zheng, W.-H. Fan, H. Li, and J. Tang, “Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory,” J. Mol. Spectrosc. 296, 9–13 (2014).
[Crossref]

J. Mol. Struct. (2)

R. G. Zhbankov, V. M. Andrianov, and M. K. Marchewka, “Fourier transform IR and Raman spectroscopy and structure of carbohydrates,” J. Mol. Struct. 436-437, 637–654 (1997).
[Crossref]

H. A. Wells and R. H. Atalla, “An investigation of the vibrational spectra of glucose, galactose and mannose,” J. Mol. Struct. 224, 385–424 (1990).
[Crossref]

J. Phys. Chem. A (1)

X. Fu, H. Wu, X. Xi, and J. Zhou, “Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region,” J. Phys. Chem. A 118(2), 333–338 (2014).
[Crossref]

J. Phys. Chem. B (1)

N. Dujardin, E. Dudognon, J.-F. Willart, A. Hédoux, Y. Guinet, L. Paccou, and M. Descamps, “Solid state mutarotation of glucose,” J. Phys. Chem. B 115(7), 1698–1705 (2011).
[Crossref]

J. Phys. Commun. (1)

H. Zhan, Y. Wang, K. Zhao, X. Miao, J. Zhu, S. Hao, W. Yue, and S. Wu, “Surface phase-transition dynamics of ice probed by terahertz time-domain spectroscopy,” J. Phys. Commun. 2(8), 085025 (2018).
[Crossref]

J. Raman Spectrosc. (2)

S. Söderholm, Y. H. Roos, N. Meinander, and M. Hotokka, “Raman spectra of fructose and glucose in the amorphous and crystalline states,” J. Raman Spectrosc. 30(11), 1009–1018 (1999).
[Crossref]

G. Mulè, C. Burlet, and Y. Vanbrabant, “Automated curve fitting and unsupervised clustering of manganese oxide Raman responses,” J. Raman Spectrosc. 48(11), 1665–1675 (2017).
[Crossref]

Nat. Biomed. Eng. (1)

L. Zhang, L. Shi, Y. Shen, Y. Miao, M. Wei, N. Qian, Y. Liu, and W. Min, “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3(5), 402–413 (2019).
[Crossref]

Nat. Commun. (3)

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref]

K. A. Niessen, M. Xu, D. K. George, M. C. Chen, A. R. Ferré-D’Amaré, E. H. Snell, V. Cody, J. Pace, M. Schmidt, and A. G. Markelz, “Protein and RNA dynamical fingerprinting,” Nat. Commun. 10(1), 1026 (2019).
[Crossref]

M. Grechko, T. Hasegawa, F. D’Angelo, H. Ito, D. Turchinovich, Y. Nagata, and M. Bonn, “Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy,” Nat. Commun. 9(1), 885 (2018).
[Crossref]

Nat. Methods (1)

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Pharm. Anal. Acta (1)

S. Kojima, T. Mori, T. Shibata, and Y. Kobayashi, “Broadband Terahertz time-domain and low-frequency Raman spectroscopy of crystalline and glassy pharmaceuticals,” Pharm. Anal. Acta 6(8), 1000401 (2015).
[Crossref]

Proc. IEEE (1)

B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95(8), 1592–1604 (2007).
[Crossref]

React. Chem. Eng. (1)

P. Ramesh, A. Kritikos, and G. Tsilomelekis, “Effect of metal chlorides on glucose mutarotation and possible implications on humin formation,” React. Chem. Eng. 4(2), 273–277 (2019).
[Crossref]

Sci. Rep. (1)

C. Song, W. H. Fan, L. Ding, X. Chen, Z. Y. Chen, and K. Wang, “Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions,” Sci. Rep. 8(1), 8964 (2018).
[Crossref]

Spectrochim. Acta (1)

T. W. Barrett, “Laser Raman spectra of mono-, oligo- and polysaccharides in solution,” Spectrochim. Acta 37(4), 233–239 (1981).
[Crossref]

Spectrochim. Acta, Part A (1)

E. Wiercigroch, E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, “Raman and infrared spectroscopy of carbohydrates: A review,” Spectrochim. Acta, Part A 185, 317–335 (2017).
[Crossref]

Trends Biotechnol. (1)

X. Yang, Z. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends Biotechnol. 34(10), 810–824 (2016).
[Crossref]

Other (3)

A. Broido, Y. Houminer, and S. Patai, “Pyrolytic reactions of carbohydrates. Part I. Mutarotation of molten D-glucose,” J. Chem. SOC. (B), 411–414 (1966).

A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry (3rd ed.) (Macmillan Publishing Co., 1985).

S. Srisa-nga, The effect of the mutarotation reaction on the crystallization of glucose monohydrate (Suranaree University of Technology, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental schematics for characterizations of quartz-glucose-quartz samples via (a) Raman spectroscopic analyses and (b) THz spectroscopic analyses. In (a), the continuous wave 780-nm pump laser beam is focused into the glucose layer of the sample to generate Raman spectra. In (b), the pulsed 780-nm pump and probe laser beams are directed onto the THz emitter and detector to generate a THz sample spectrum, $\tilde{E}_{\textrm{s}}(f)$, and THz reference spectrum, $\tilde{E}_{\textrm{r}}(f)$, with and without the sample present, respectively. The ratio of THz sample spectrum, $\tilde{E}_{\textrm{s}}(f)$, and THz input spectrum, $\tilde{E}_{\textrm{r}}(f)$exp(jk0(2dq+d)), is then used to extract the quartz layers’ refractive index, nq(f), and extinction coefficient, κq(f), and the glucose layer's refractive index, n(f), and extinction coefficient, κ(f). Here, k0 is the wavenumber for the frequency f, dq = 170 µm is the thickness of each quartz layer, and d = 180 µm is the thickness of the glucose layer.
Fig. 2.
Fig. 2. Raman spectral characteristics are plotted for D-glucose over a range of wavenumbers (and frequencies) spanning 100 to 1500 cm−1 (3.0 to 45 THz). In (a), the data is displayed as a surface plot for measurements at one-hour intervals. In (b), the data is displayed as offset spectral profiles for measurements at hours 0, 4 and 10. The spectral profiles are normalized according to their area. In (c), modeled spectral characteristics as a sum of the modeled (pseudo-Voigt) peaks are compared to the measured spectral characteristics (at hour 0).
Fig. 3.
Fig. 3. Terahertz spectral characteristics for D-glucose over the THz continuum, spanning 10 to 40 cm−1 (0.3 to 1.2 THz). In (a) and (b), the refractive index and absorption coefficient are displayed as surfaces for measurements at five-hour intervals. In (c) and (d), the refractive index and absorption coefficient are displayed as profiles for measurements at hours 0, 15, 35, and 50. Peaks at 0.555, 0.750, 0.985, 1.095, and 1.160 THz are due to water vapour in the environment of the THz beam, as it exhibits rotational transitions of 101-110, 202-211, 111-202, 303-312, and 312-321, respectively [51,52].
Fig. 4.
Fig. 4. The visual propagation of crystallites from the outer edges of a glucose sample is shown over the crystallization period, beginning with (a) zero crystallites, continuing through (b) partial crystallization, and ending with (c) the sample containing predominantly crystallized glucose.

Tables (1)

Tables Icon

Table 1. Raman spectral characteristics of the α and β anomers of D-glucosea.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ~ s ( f ) / E ~ r ( f ) e x p ( j k 0 ( 2 d q + d ) ) ,
I ( 540   c m 1 , t ) d k 0 /   (   I ( 518   c m 1 , t ) d k 0 +   I ( 540   c m 1 , t ) d k 0 ) ,
I ( 518   c m 1 , t ) d k 0 /   (   I ( 518   c m 1 , t ) d k 0 +   I ( 540   c m 1 , t ) d k 0 ) .
E ~ s ( f ) E ~ r ( f ) [ t ~ 0 , 1 ( f ) t ~ 1 , 2 ( f ) t ~ 2 , 3 ( f ) t ~ 3 , 0 ( f ) exp ( j k 0 { d 1 [ n ~ 1 ( f ) 1 ] + d 2 [ n ~ 2 ( f ) 1 ] + d 3 [ n ~ 3 ( f ) 1 ] } ) ] ( 1 + r ~ 0 , 1 ( f ) r ~ 1 , 2 ( f ) exp [ j k 0 2 n ~ 1 ( f ) d 1 ] + r ~ 1 , 2 ( f ) r ~ 3 , 0 ( f ) exp { j k 0 2 [ n ~ 2 ( f ) d 2 + n ~ 3 ( f ) d 3 ] } + r ~ 1 , 2 ( f ) r ~ 2 , 3 ( f ) exp [ j k 0 2 n ~ 2 ( f ) d 2 ] + r ~ 0 , 1 ( f ) r ~ 1 , 2 ( f ) r ~ 2 , 3 ( f ) r ~ 3 , 0 ( f ) exp { j k 0 2 [ n ~ 1 ( f ) d 1 + n ~ 3 ( f ) d 3 ] } + r ~ 2 , 3 ( f ) r ~ 3 , 0 ( f ) exp [ j k 0 2 n ~ 3 ( f ) d 3 ] + r ~ 0 , 1 ( f ) r ~ 2 , 3 ( f ) exp { j k 0 2 [ n ~ 1 ( f ) d 1 + n ~ 2 ( f ) d 2 ] } + r ~ 0 , 1 ( f ) r ~ 3 , 0 ( f ) exp { j k 0 2 [ n ~ 1 ( f ) d 1 + n ~ 2 ( f ) d 2 + n ~ 3 ( f ) d 3 ] } ) = 0 ,

Metrics