Abstract

Here, we design a metal-graphene metamaterial to selectively control dual EIT modes. The metallic metamaterial consists of bright, dark, and quasi-dark meta-atoms, leading to two EIT modes. Meanwhile, monolayer graphene ribbons inserted under the dark meta-atoms and quasi-dark meta-atoms are separately connected to different electric sources. In simulation, both the two EIT modes and the time delays can be selectively controlled. Moreover, the number of the EIT modes can be tuned from two to one, and even to zero. Our work provides a strategy to selectively control the two EIT modes and the slow light compacted in a terahertz metamaterial, which may achieve potential applications in actively tunable integrated terahertz devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial

Chenxi Liu, Peiguo Liu, Cheng Yang, Yue Lin, and Song Zha
Opt. Mater. Express 8(5) 1132-1142 (2018)

Tunable electromagnetically induced transparency based on graphene metamaterials

Binggang Xiao, Shengjun Tong, Alexander Fyffe, and Zhimin Shi
Opt. Express 28(3) 4048-4057 (2020)

Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials

Jiuxing Jiang, Qinfei Zhang, Qixiang Ma, Shitao Yan, Fengmin Wu, and Xunjun He
Opt. Mater. Express 5(9) 1962-1971 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref]
  2. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  4. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [Crossref]
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  6. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref]
  7. Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
    [Crossref]
  8. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref]
  9. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
    [Crossref]
  10. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
    [Crossref]
  11. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref]
  12. Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
    [Crossref]
  13. L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
    [Crossref]
  14. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref]
  15. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref]
  16. Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
    [Crossref]
  17. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref]
  18. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
    [Crossref]
  19. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
    [Crossref]
  20. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
    [Crossref]
  21. K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
    [Crossref]
  22. Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010).
    [Crossref]
  23. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  24. Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
    [Crossref]
  25. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
    [Crossref]
  26. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  27. W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
    [Crossref]
  28. X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016).
    [Crossref]
  29. X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
    [Crossref]
  30. J. Linder and K. Halterman, “Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures,” Sci. Rep. 6(1), 38141 (2016).
    [Crossref]
  31. X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
    [Crossref]
  32. T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
    [Crossref]
  33. S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
    [Crossref]
  34. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  35. B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
    [Crossref]
  36. C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
    [Crossref]
  37. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  38. X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
    [Crossref]
  39. Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
    [Crossref]
  40. C. Sun, Z. Dong, J. Si, and X. Deng, “Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies,” Opt. Express 25(2), 1242–1250 (2017).
    [Crossref]
  41. C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on graphene metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
    [Crossref]
  42. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
    [Crossref]
  43. C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
    [Crossref]
  44. R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
    [Crossref]
  45. T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
    [Crossref]
  46. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  47. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  48. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref]
  49. G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
    [Crossref]
  50. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]

2019 (3)

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
[Crossref]

2018 (5)

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

2017 (5)

2016 (7)

2015 (1)

2014 (3)

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

2013 (2)

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

2012 (6)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref]

2011 (3)

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

2010 (3)

2009 (4)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

2002 (1)

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Almond, N. W.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Alzar, C. L. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

Azad, A. K.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Bartal, G.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Beere, H. E.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bettiol, A. A.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Braeuninger-Weimer, P.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Buchwald, W. R.

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Cai, W.

Cao, W.

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Chai, Z.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Chen, H.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Chen, J.

Chen, Z.

R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

Chiam, S. Y.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Chung, D. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Cui, Y.

de Abajo, F. J. G.

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Degl’Innocenti, R.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Deng, X.

Dong, Z.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Fu, J. H.

Gao, X.

R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Gong, Q.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Gu, J.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Ha, T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Halterman, K.

J. Linder and K. Halterman, “Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures,” Sci. Rep. 6(1), 38141 (2016).
[Crossref]

Ham, B. S.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Han, J.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, X.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

He, Z.

Heinz, T. F.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Hofmann, S.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Hu, C.

Hu, X.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Hua, J.

Huang, X. R.

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Jang, W. H.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010).
[Crossref]

Jiang, H.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Jiang, J.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Jnawali, G.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

Kamboj, V. S.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Kim, H. D.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kim, J.

Kim, T. T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kindness, S. J.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Lederer, F.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Lee, Y. H.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Lee, Y. P.

Li, H.

Li, Q.

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Lin, Y.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Linder, J.

J. Linder and K. Halterman, “Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures,” Sci. Rep. 6(1), 38141 (2016).
[Crossref]

Liu, C.

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Liu, H.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Liu, P.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Liu, X.

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Lu, C.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Lu, G.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Lu, H.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Lu, Y.

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010).
[Crossref]

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Luo, W.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Manjappa, M.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Mao, D.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Martinez, M. A. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Meng, F. Y.

Michailow, W.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Min, B.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Ning, R.

R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
[Crossref]

Nussenzveig, P.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Oh, S. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Ouyang, C.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Park, Y. S.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Peng, R. W.

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Qin, L.

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Rao, Y.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

Ren, M.

Rhee, J. Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010).
[Crossref]

Ritchie, D. A.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Rockstuhl, C.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Si, J.

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Soref, R.

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Srivastava, Y. K.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

Su, X.

Sun, C.

Sun, Y.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tian, Z.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Wallis, R.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Wang, C.

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Wang, L.

Wang, M.

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wei, B.

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Wu, F.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Wu, K.

Wu, Q.

Xiang, Y.

Xiao, J.

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Xiao, S.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xiong, C.

Xiong, X.

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Xu, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, D. H.

Xu, H.

Xu, J.

Xu, N.

Xu, Q.

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

Yan, H.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, C.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Yang, H.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Yang, W.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yang, X.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Yao, J.

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016).
[Crossref]

Ye, Z.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Yin, X.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Yu, Z.

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yuan, C.

X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016).
[Crossref]

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Zeng, C.

Zentgraf, T.

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

Zhang, B.

Zhang, K.

K. Zhang, C. Wang, L. Qin, R. W. Peng, D. H. Xu, X. Xiong, and M. Wang, “Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial,” Opt. Lett. 39(12), 3539–3542 (2014).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

Zhang, R.

Zhang, S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Zhang, X.

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[Crossref]

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, Y.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref]

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Zhao, M.

Zhao, R.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Zhao, X.

X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41(23), 5470–5473 (2016).
[Crossref]

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Zheng, M.

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

Zhu, L.

Zhu, S.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

ACS Photonics (1)

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically Tunable Slow Light Using Graphene Metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Adv. Opt. Mater. (2)

S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning,” Adv. Opt. Mater. 6(21), 1800570 (2018).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Am. J. Phys. (1)

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical Analog of Electromagnetically Induced Transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Appl. Phys. Lett. (2)

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

Carbon (3)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Int. J. Mod. Phys. B (1)

R. Ning, X. Gao, and Z. Chen, “Wideband and multiband electromagnetically induced transparency in graphene metamaterials,” Int. J. Mod. Phys. B 33(09), 1950068 (2019).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. D: Appl. Phys. (1)

T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, “Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial,” J. Phys. D: Appl. Phys. 51(41), 415105 (2018).
[Crossref]

J. Phys.: Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (2)

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref]

Nanoscale (1)

X. Zhao, C. Yuan, L. Zhu, and J. Yao, “Graphene-based tunable terahertz plasmon-induced transparency metamaterial,” Nanoscale 8(33), 15273–15280 (2016).
[Crossref]

Nat. Commun. (2)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Express (10)

Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18(20), 20912–20917 (2010).
[Crossref]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[Crossref]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[Crossref]

C. Sun, Z. Dong, J. Si, and X. Deng, “Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies,” Opt. Express 25(2), 1242–1250 (2017).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref]

C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on graphene metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
[Crossref]

Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Phys. Rev. B (7)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Z. Ye, S. Zhang, Y. Wang, Y. S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B 86(15), 155148 (2012).
[Crossref]

L. Qin, K. Zhang, R. W. Peng, X. Xiong, W. Zhang, X. R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Phys. Rev. Lett. (6)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Sci. Rep. (1)

J. Linder and K. Halterman, “Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures,” Sci. Rep. 6(1), 38141 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The schematic of the selectively tunable EIT metamaterial on the SiO2/Si substrate, with monolayer graphene ribbons inserted between the nanostructure and the substrate. The voltages V1 and V2 are respectively applied to the graphene ribbons through the discrete electrodes, which can be controlled independently. (b) The top view of the unit cell of the metamaterial, with the periods of 120µm in both directions. The geometric parameters are L1 = 38µm, W1 = 36µm, D1 = 10µm, D2 = 20µm, M1 = 20µm, M2 = 18µm, L2 = 98µm, W2 = 10µm, L3 = 49µm, W3 = 28µm, D3 = 8µm, N1=33µm, N2=12µm, f1 = 6µm and f2 = 7µm, respectively. The thickness of the metamaterial is t = 0.2µm.
Fig. 2.
Fig. 2. (a) The calculated transmission spectra of the periodic array consisting only one kind of meta-atom. The purple, blue and orange solid lines are the transmission spectra of the dark, bright and the quasi-dark meta-atom arrays under x-polarization illumination, respectively. The green dashed line are the spectra of dark meta-atom array under y-polarization. (b) The transmission spectra of the metamaterial constructed by the three kinds of meta-atoms. (c) The frequency dependent surface conductivities of the monolayer graphene related to different Fermi levels, where the solid lines and the dashed lines represent the real part and the imaginary part, respectively. (d) The group delay of the metamaterial.
Fig. 3.
Fig. 3. (a) The transmission spectra when tuning the voltage V1 to change the Fermi level EF1 of the graphene in touch with the dark meta-atoms from 0.1 eV to 0.3 eV. (b) The transmission spectra when tuning the voltage V2 to change the Fermi level EF2 of the graphene in touch with the quasi-dark meta-atoms from 0.1 eV to 0.3 eV.
Fig. 4.
Fig. 4. (a) and (b) show the electric field amplitude distributions at the transparency windows of 0.48THz and 0.55THz, respectively, without external voltages. (c) The electric field amplitude distribution at the remained transparency window, when EF1 is tuned to 0.3 eV by V1. (d) The electric field amplitude distribution at the remained transparency window, when EF2 is tuned to 0.3 eV by V2. The white dashed lines outline the meta-atoms.
Fig. 5.
Fig. 5. (a) and (b) display the frequency dependent group delays when the Fermi levels of the graphene ribbons are tuned from 0.1 eV to 0.3 eV by V1 and V2, respectively.
Fig. 6.
Fig. 6. (a) The transmission spectra when voltage V2 is applied to fix EF2 as 0.3 eV and then tune V1 to increase EF1 from 0.1 eV to 0.3 eV. (b) The corresponding group delay.
Fig. 7.
Fig. 7. The transmission spectra as μ is changed from 2000cm2/V·s to 4000cm2/V·s, when (a) only apply voltage V1 to fix EF1 as 0.2 eV and (b) only apply voltage V2 to fix EF2 as 0.2 eV.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( P 1 P 2 P 3 ) = ( ω 0 2 ω 2 i γ 1 ω Ω 12 2 Ω 13 2 Ω 21 2 ω 0 2 ω 2 i γ 2 ω Ω 23 2 Ω 31 2 Ω 32 2 ω 0 2 ω 2 i γ 3 ω ) 1 ( κ 1 E 0 κ 2 E 0 κ 3 E 0 ) ,
ε Au = ε ω p 2 ω 2 + i ω γ ,
σ g σ intra e 2 E F π 2 i ω + i τ 1 ,
t g = d φ d ω ,

Metrics