Abstract

Using an electrically focus tunable lens (EFTL) in an F-scan setup and a tunable femtosecond-pulse laser (Mai Tai HP), we were able to measure the degenerated two-photon absorption coefficient (in transmission) of CdS and ZnSe in an extended range of wavelengths (690-1040 nm), with a 5 nm resolution. The process of measuring takes less than 30 minutes. We compared our results with theoretical approaches for the dispersion relations of the nonlinear properties of semiconductors and found excellent agreement with the experimental results. We also compare our results with those reported in the literature. We derive the nonlinear refraction using a Kramers-Kronig relation and compare it with the values reported in the literature. The system has no moving parts, is highly compact, and is fully automated.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan

Mihaela Balu, Joel Hales, David J. Hagan, and Eric W. Van Stryland
Opt. Express 13(10) 3594-3599 (2005)

Nonlinear refraction and absorption measurements of thin films by the dual-arm Z-scan method

Trenton R. Ensley, Sepehr Benis, Honghua Hu, Zhong’an Li, Sei-Hum Jang, Alex K.-Y. Jen, Joseph W. Perry, Joel M. Hales, David J. Hagan, and Eric W. Van Stryland
Appl. Opt. 58(13) D28-D33 (2019)

White-light continuum Z-scan technique for nonlinear materials characterization

Mihaela Balu, Joel Hales, David J. Hagan, and Eric W. Van Stryland
Opt. Express 12(16) 3820-3826 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
    [Crossref]
  2. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12(16), 3820 (2004).
    [Crossref]
  3. M. Balu, D. Hagan, and E. Van Stryland, “High Spectral Irradiance White-Light Continuum Z-scan,” in Ultrafast Phenomena XV. Springer Series in Chemical Physics, Vol 88 (Springer Berlin Heidelberg, 2007), pp. 107–109.
    [Crossref]
  4. S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
    [Crossref]
  5. M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  6. W. Steiger, P. Gruber, D. Theiner, A. Dobos, M. Lunzer, J. Van Hoorick, S. Van Vlierberghe, R. Liska, and A. Ovsianikov, “Fully automated z-scan setup based on a tunable fs-oscillator,” Opt. Mater. Express 9(9), 3567 (2019).
    [Crossref]
  7. E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
    [Crossref]
  8. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [Crossref]
  9. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  10. T. Krauss and F. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
    [Crossref]
  11. E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
    [Crossref]
  12. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).
  13. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).
  14. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
    [Crossref]
  15. M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114(10), 515–519 (2000).
    [Crossref]
  16. J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
    [Crossref]
  17. E. W. Van Stryland, “Third order and cascade nonlinearities,” in Laser Sources and Applications, A. Miller and D. M. Finlayson, eds. (Procedding of the Forty Seventh Scottish University Summer School in Physics, 1996), pp. 15–62.
  18. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
    [Crossref]

2019 (2)

W. Steiger, P. Gruber, D. Theiner, A. Dobos, M. Lunzer, J. Van Hoorick, S. Van Vlierberghe, R. Liska, and A. Ovsianikov, “Fully automated z-scan setup based on a tunable fs-oscillator,” Opt. Mater. Express 9(9), 3567 (2019).
[Crossref]

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

2017 (1)

S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
[Crossref]

2005 (2)

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

2004 (1)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

2000 (2)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114(10), 515–519 (2000).
[Crossref]

1994 (1)

T. Krauss and F. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

1985 (1)

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

Balu, M.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12(16), 3820 (2004).
[Crossref]

M. Balu, D. Hagan, and E. Van Stryland, “High Spectral Irradiance White-Light Continuum Z-scan,” in Ultrafast Phenomena XV. Springer Series in Chemical Physics, Vol 88 (Springer Berlin Heidelberg, 2007), pp. 107–109.
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).

Bisht, P. B.

S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
[Crossref]

Bongu, S. R.

S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
[Crossref]

Brambilla, M.

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114(10), 515–519 (2000).
[Crossref]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

Dabbicco, M.

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114(10), 515–519 (2000).
[Crossref]

Dey, S.

S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Dobos, A.

Garcia, H.

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Gruber, P.

Hagan, D.

M. Balu, D. Hagan, and E. Van Stryland, “High Spectral Irradiance White-Light Continuum Z-scan,” in Ultrafast Phenomena XV. Springer Series in Chemical Physics, Vol 88 (Springer Berlin Heidelberg, 2007), pp. 107–109.
[Crossref]

Hagan, D. J.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12(16), 3820 (2004).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).

Hales, J.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12(16), 3820 (2004).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).

Hamad, A.

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

He, J.

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Ji, W.

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Krauss, T.

T. Krauss and F. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

Li, H.

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Liska, R.

Lunzer, M.

Mi, J.

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

Ovsianikov, A.

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Rueda, E.

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

Said, A. a.

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Serna, J. H.

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shekhar, G.

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Smirl, A. L.

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Soileau, M. J.

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Steiger, W.

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Theiner, D.

Thomas, F. B.

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Van Hoorick, J.

Van Stryland, E.

M. Balu, D. Hagan, and E. Van Stryland, “High Spectral Irradiance White-Light Continuum Z-scan,” in Ultrafast Phenomena XV. Springer Series in Chemical Physics, Vol 88 (Springer Berlin Heidelberg, 2007), pp. 107–109.
[Crossref]

Van Stryland, E. W.

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization,” Opt. Express 12(16), 3820 (2004).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).

E. W. Van Stryland, “Third order and cascade nonlinearities,” in Laser Sources and Applications, A. Miller and D. M. Finlayson, eds. (Procedding of the Forty Seventh Scottish University Summer School in Physics, 1996), pp. 15–62.

Van Vlierberghe, S.

Wei, T.-H.

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wise, F.

T. Krauss and F. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

Woodall, M. A.

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Appl. Phys. Lett. (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

T. Krauss and F. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739–1741 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, A. a. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Appl. Phys. (1)

S. Dey, S. R. Bongu, and P. B. Bisht, “Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan,” J. Appl. Phys. 121(11), 113107 (2017).
[Crossref]

J. Phys. Chem. B (1)

J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B 109(41), 19184–19187 (2005).
[Crossref]

Opt. Eng. (1)

E. W. Van Stryland, M. A. Woodall, M. J. Soileau, A. L. Smirl, G. Shekhar, and F. B. Thomas, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24(4), 613–623 (1985).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

E. Rueda, J. H. Serna, A. Hamad, and H. Garcia, “Two-photon absorption coefficient determination using the differential F-scan technique,” Opt. Laser Technol. 119, 105584 (2019).
[Crossref]

Opt. Mater. Express (1)

Opt. Photonics News (1)

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Using a White-Light Continuum Z scan Optical-to-Terahertz Conversion for Plasmon – Polariton Surface Spectroscopy,” Opt. Photonics News 16(12), 28–29 (2005).
[Crossref]

Phys. Rev. B (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

Solid State Commun. (1)

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114(10), 515–519 (2000).
[Crossref]

Other (4)

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Two-photon absorption and the dispersion of nonlinear refraction using a white-light continuum Z-scan,” Opt. InfoBase Conf. Pap.13, 3594–3599 (2005).

M. Balu, D. Hagan, and E. Van Stryland, “High Spectral Irradiance White-Light Continuum Z-scan,” in Ultrafast Phenomena XV. Springer Series in Chemical Physics, Vol 88 (Springer Berlin Heidelberg, 2007), pp. 107–109.
[Crossref]

E. W. Van Stryland, “Third order and cascade nonlinearities,” in Laser Sources and Applications, A. Miller and D. M. Finlayson, eds. (Procedding of the Forty Seventh Scottish University Summer School in Physics, 1996), pp. 15–62.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Example autocorrelation of the Mai Tai tunable laser pulse; Δt is the time delay. (Inset) Spectral width.
Fig. 2.
Fig. 2. Experimental setup. The components are Mai Tai tunable pulse laser, computer-controlled motorized density filter (NF), Optical chopper (OC), Mirror (M1), Electrically focus-tunable lens (EFTL), sample, convergent lens (L1), integrating sphere (D1), Lock-in amplifier and personal computer (PC).
Fig. 3.
Fig. 3. (a) ZnSe F-scan signal at 690 nm. The red dashed line depicts the lowest transmittance (LI) at 150 mA, while the blue dashed line depicts the highest transmittance (HI) at 200 mA. Both values are used to determine the TPA coefficient at 690 nm. (b) HI and LI for every wavelength.
Fig. 4.
Fig. 4. Two-photon absorption for ZnSe. The black dots are the experimental data, and the blue line is the fit obtained using the two-band model and parameters Eg = 2.68 eV and A = 3802. The statistical uncertainties of the measurements are under 0.05 cm/GW, yet we estimated a 10% relative error in our measurements (not all error bars appear in the graph). Experimental data found in the literature: green down-triangle [10], coral left-triangle [11], grey pentagon [5], cyan thin-diamond [7], olive square [12], red cross [2], blue cross [13], yellow triangle [14], violet diamond [15].
Fig. 5.
Fig. 5. Two-photon absorption for CdS. The black dots are the experimental data, and the blue line is the fit obtained using the two-band model and parameters Eg = 2.47 eV and A = 2342. The statistical uncertainties of the measurements are under 0.05 cm/GW, yet we estimated a 10% relative error in our measurements (not all error bars appear in the graph). Experimental data found in the literature: green down-triangle [10], coral left-triangle [11], cyan thin-diamond [7], tan triangle [16].
Fig. 6.
Fig. 6. Transmittance for ZnSe (Eg = 2.63 eV), and CdS (Eg = 2.36 eV).
Fig. 7.
Fig. 7. Nonlinear refraction for ZnSe (a) and CdS (b) using the fitted β(E) and Eq. (5). We plotted the experimental data found in the literature: green triangle [10], grey pentagon [9], blue cross [13], and red triangle [18].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) = 1 β ( 1 R ) I 0 L e f f 2 2 ( 1 + x 2 ) ,
T L T H = 1 β ( 1 R ) I 0 L e f f / β ( 1 R ) I 0 L e f f 2 2 2 2
β ( λ ) = 2 2 ( 1 T L / T H ) / ( 1 R ) I 0 L e f f .
β ( ω ) = A E g 3 ( 2 ω E g 1 ) 3 / 2 ( 2 ω E g ) 5 H ( 2 ω E g 1 ) ,
n 2 ( ω ) = 2 c π ω min ω max β ( ω ) ω 2 ω 2 d ω + C ,

Metrics