Abstract

Metal nanoparticles have recently been shown experimentally to speed up chemical reactions when subject to illumination. The mechanisms of this phenomenon have been under debate. A dominant role for high energy non-thermal (typically but imprecisely referred to as “hot”) electrons was proposed in a study by the Halas group [Science 362, 69 (2018) [CrossRef]  ]. However, evidence that the faster chemistry has a purely thermal origin has been accumulating, alongside the identification of methodological and technical flaws in the theory and experiments claiming the dominance of “hot” electrons [Science 364, eaaw9367 (2019) [CrossRef]  ]. Here, we advance this discussion towards the possibility of isolating thermal from non-thermal effects. We detail a series of experimental aspects that must be accounted for before effects of “hot” electrons can be distinguished from thermal contributions in plasmonic photocatalysis.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of polarization in evanescent wave amplification for the enhancement of scattering of nanoparticles on surfaces

D. Kolenov, H. P. Urbach, and S. F. Pereira
OSA Continuum 3(4) 742-758 (2020)

Simultaneous length extension and temporal prolongation of high-density plasma filaments generated by a femtosecond laser in the air

Ynon Hefets, Jenya Papeer, Indranuj Dey, and Arie Zigler
OSA Continuum 3(2) 267-274 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898 (2014).
    [Crossref]
  2. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  3. M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
    [Crossref]
  4. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref]
  5. W. Li and J. Valentine, “Harvesting the loss: Surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
    [Crossref]
  6. L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
    [Crossref]
  7. Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
    [Crossref]
  8. Y. Sivan, I. W. Un, and Y. Dubi, “Thermal effects - an alternative mechanism for plasmonic-assisted photo-catalysis,” submitted; https://arxiv.org/abs/1902.03169 (2019).
  9. L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
    [Crossref]
  10. Y. Dubi and Y. Sivan, “"hot electrons" in metallic nanostructures - non-thermal carriers or heating?” Light: Sci. Appl. 8(1), 89 (2019).
    [Crossref]
  11. Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
    [Crossref]
  12. S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
    [Crossref]
  13. X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
    [Crossref]
  14. X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
    [Crossref]
  15. P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
    [Crossref]
  16. P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
    [Crossref]
  17. B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
    [Crossref]
  18. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer: The blackbody, electromagnetic theory, and material properties, vol. 164 (Scientific and Technical Information Division, NASA, 1968).
  19. J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
    [Crossref]
  20. H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
    [Crossref]
  21. G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
    [Crossref]
  22. ( http://www.cctvcentersl.es/upload/Manuales/A3xxx_A6xxx_manual_eng.pdf , page 85)
  23. (FLIR A615, http://www.cctvcentersl.es/upload/Manuales/A3xxx_A6xxx_manual_eng.pdf , page 85)
  24. J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
    [Crossref]
  25. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
    [Crossref]
  26. ( https://flir.custhelp.com/app/utils/fl_fovCalc/pn/55001-0102/ret_url/%252Fapp%252Ffl_download_datasheets%252Fid%252F20 )
  27. J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
    [Crossref]
  28. F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
    [Crossref]
  29. T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
    [Crossref]
  30. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
    [Crossref]
  31. H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
    [Crossref]
  32. Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
    [Crossref]
  33. I. Gurwich and Y. Sivan, “A metal nanosphere under intense continuous wave illumination - a unique case of non-perturbative nonlinear nanophotonics,” Phys. Rev. E 96(1), 012212 (2017).
    [Crossref]
  34. P.-T. Shen, Y. Sivan, C.-W. Lin, H.-L. Liu, C.-W. Chang, and S.-W. Chu, “Temperature- and -roughness dependent permittivity of annealed/unannealed gold films,” Opt. Express 24(17), 19254 (2016).
    [Crossref]
  35. A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
    [Crossref]
  36. ( https://support.flir.com/DsDownload/Assets/55001-0102-en-US.html )
  37. https://www.findlight.net/front-media/products/datasheet/WhiteLase_SC400_UV_v1.pdf
  38. https://www.gophotonics.com/products/lasers/nkt-photonics/29-650-wl-sc-400-8 , https://www.nktphotonics.com/lasers-fibers/product/superk-extreme-fianium-supercontinuum-lasers and https://www.nktphotonics.com/wp-content/uploads/sites/3/2018/12/superk-ext-fiu-spectral-power-density-v2.jpg
  39. S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
    [Crossref]
  40. K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
    [Crossref]

2019 (8)

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

Y. Dubi and Y. Sivan, “"hot electrons" in metallic nanostructures - non-thermal carriers or heating?” Light: Sci. Appl. 8(1), 89 (2019).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
[Crossref]

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

2018 (2)

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

2017 (4)

W. Li and J. Valentine, “Harvesting the loss: Surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

I. Gurwich and Y. Sivan, “A metal nanosphere under intense continuous wave illumination - a unique case of non-perturbative nonlinear nanophotonics,” Phys. Rev. E 96(1), 012212 (2017).
[Crossref]

2016 (5)

P.-T. Shen, Y. Sivan, C.-W. Lin, H.-L. Liu, C.-W. Chang, and S.-W. Chu, “Temperature- and -roughness dependent permittivity of annealed/unannealed gold films,” Opt. Express 24(17), 19254 (2016).
[Crossref]

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
[Crossref]

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

2015 (2)

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

2014 (6)

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
[Crossref]

2013 (1)

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

2012 (2)

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
[Crossref]

2011 (2)

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
[Crossref]

Aizpurua, J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Asenjo-Garcia, A.

J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
[Crossref]

Ayala-Orozco, C.

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

Baffou, G.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898 (2014).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Baletto, F.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Baraban, J.

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

Baraban, J. H.

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

Baumberg, J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Block, A.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Boltasseva, A.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Borri, P.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

Brown, L. V.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Carter, E. A.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Chang, C.-W.

Chaudhuri, K.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Cheng, J.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Christopher, P.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
[Crossref]

Chu, S.-W.

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

P.-T. Shen, Y. Sivan, C.-W. Lin, H.-L. Liu, C.-W. Chang, and S.-W. Chu, “Temperature- and -roughness dependent permittivity of annealed/unannealed gold films,” Opt. Express 24(17), 19254 (2016).
[Crossref]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Crut, A.

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

d. Nijs, B.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Daily, J. W.

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

David, D. E.

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

de Abajo, F. J. G.

J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
[Crossref]

de Abajo, J. G.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Deshpande, P.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Diaz Fernandez, Y.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Dong, L.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Dubi, Y.

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
[Crossref]

Y. Dubi and Y. Sivan, “"hot electrons" in metallic nanostructures - non-thermal carriers or heating?” Light: Sci. Appl. 8(1), 89 (2019).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Thermal effects - an alternative mechanism for plasmonic-assisted photo-catalysis,” submitted; https://arxiv.org/abs/1902.03169 (2019).

Dutta, A.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

Ellison, G. B.

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

Everitt, H. O.

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Fabris, L.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Fatti, N. D.

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

Finzel, J.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Freakley, S.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Fujita, K.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Gawinkowski, S.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Goodman, A.

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

Govorov, A.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Guler, U.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Gurwich, I.

I. Gurwich and Y. Sivan, “A metal nanosphere under intense continuous wave illumination - a unique case of non-perturbative nonlinear nanophotonics,” Phys. Rev. E 96(1), 012212 (2017).
[Crossref]

Gutíerrez, Y.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Halas, N.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Halas, N. J.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Hashimoto, S.

K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
[Crossref]

Henderson, L.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Hernandez, R.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer: The blackbody, electromagnetic theory, and material properties, vol. 164 (Scientific and Technical Information Division, NASA, 1968).

Huang, Y.-T.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Jankiewicz, B.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Kawata, S.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Khurgin, J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Kuisma, M.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Kumar, P. V.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Kundrat, F.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Langbein, W.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
[Crossref]

Large, N.

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Lassiter, J. B.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Lee, H.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Li, K.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Li, W.

W. Li and J. Valentine, “Harvesting the loss: Surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

Li, X.

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Libisch, F.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Liebel, M.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Lin, C.-W.

Linic, S.

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
[Crossref]

Lischner, J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Liu, H.-L.

Liu, J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Lou, M.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Maioli, P.

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

Marimuthu, A.

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

Marini, A.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Masia, F.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
[Crossref]

Maurer, R. J.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Monneret, S.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Moreno, F.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Moskovits, M.

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref]

Mueller, N. S.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Mukherjee, S.

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

na, E. B.-U.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Neumann, O.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Nordlander, P.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Okada, Y.

K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
[Crossref]

Oketani, R.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Parente, M.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Park, J. Y.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Polleux, J.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Qi, J.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Quidant, R.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898 (2014).
[Crossref]

Reddy, H.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Reich, S.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Reish, M. E.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Rigneault, H.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Robatjazi, H.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Robert, H. M. L.

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

Saavedra, J. R. M.

J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
[Crossref]

Seemala, B.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Setoura, K.

K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
[Crossref]

Shalaev, V. M.

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776–2802 (2016).
[Crossref]

Shen, P.-T.

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer: The blackbody, electromagnetic theory, and material properties, vol. 164 (Scientific and Technical Information Division, NASA, 1968).

Sivan, Y.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

Y. Dubi and Y. Sivan, “"hot electrons" in metallic nanostructures - non-thermal carriers or heating?” Light: Sci. Appl. 8(1), 89 (2019).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
[Crossref]

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

I. Gurwich and Y. Sivan, “A metal nanosphere under intense continuous wave illumination - a unique case of non-perturbative nonlinear nanophotonics,” Phys. Rev. E 96(1), 012212 (2017).
[Crossref]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

P.-T. Shen, Y. Sivan, C.-W. Lin, H.-L. Liu, C.-W. Chang, and S.-W. Chu, “Temperature- and -roughness dependent permittivity of annealed/unannealed gold films,” Opt. Express 24(17), 19254 (2016).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Thermal effects - an alternative mechanism for plasmonic-assisted photo-catalysis,” submitted; https://arxiv.org/abs/1902.03169 (2019).

Spector, M.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Stoll, T.

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

Su, N. Q.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Su, T.-Y.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Swearer, D. F.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Tagliabue, G.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Thangamuthu, M.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Therrien, A. J.

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

Torrente-Murciano, L.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Un, I.

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

Un, I. W.

Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
[Crossref]

Y. Sivan, I. W. Un, and Y. Dubi, “Thermal effects - an alternative mechanism for plasmonic-assisted photo-catalysis,” submitted; https://arxiv.org/abs/1902.03169 (2019).

Valentine, J.

W. Li and J. Valentine, “Harvesting the loss: Surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

Vallée, F.

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

van Hulst, N. F.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Wu, H.-Y.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Xiao, X.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Xin, H.

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
[Crossref]

Yamanaka, M.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Yang, W.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Yonemaru, Y.

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Yu, R.

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Zayats, A.

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

Zhang, C.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Zhang, D.

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Zhang, X.

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

Zhang, Y.

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

Zhao, H.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Zhou, L.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

ACS Energy Lett. (1)

B. Seemala, A. J. Therrien, M. Lou, K. Li, J. Finzel, J. Qi, P. Nordlander, and P. Christopher, “Plasmon-mediated catalytic o2 dissociation on ag nanostructures: Hot electrons or near fields?” ACS Energy Lett. 4(8), 1803–1809 (2019).
[Crossref]

ACS Omega (1)

H. M. L. Robert, F. Kundrat, E. B.-U. na, H. Rigneault, S. Monneret, R. Quidant, J. Polleux, and G. Baffou, “Light-assisted solvothermal chemistry using plasmonic nanoparticles,” ACS Omega 1(1), 2–8 (2016).
[Crossref]

ACS Photonics (3)

J. R. M. Saavedra, A. Asenjo-Garcia, and F. J. G. de Abajo, “Hot-electron dynamics and thermalization in small metallic nanoparticles,” ACS Photonics 3(9), 1637–1646 (2016).
[Crossref]

H. Reddy, U. Guler, K. Chaudhuri, A. Dutta, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films,” ACS Photonics 4(5), 1083–1091 (2017).
[Crossref]

S.-W. Chu, H.-Y. Wu, Y.-T. Huang, T.-Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, and K. Fujita, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle,” ACS Photonics 1(1), 32–37 (2014).
[Crossref]

Chem. Soc. Rev. (1)

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43(11), 3898 (2014).
[Crossref]

Eur. Phys. J. B (1)

T. Stoll, P. Maioli, A. Crut, N. D. Fatti, and F. Vallée, “Advances in femto-nano-optics: ultrafast nonlinearity of metal nanoparticles,” Eur. Phys. J. B 87(11), 260 (2014).
[Crossref]

Faraday Discuss. (2)

Y. Sivan, I. W. Un, and Y. Dubi, “Assistance of plasmonic nanostructures to photocatalysis - just a regular heat source,” Faraday Discuss. 214, 215–233 (2019).
[Crossref]

J. Aizpurua, F. Baletto, J. Baumberg, P. Christopher, B. d. Nijs, P. Deshpande, Y. Diaz Fernandez, L. Fabris, S. Freakley, S. Gawinkowski, A. Govorov, N. Halas, R. Hernandez, B. Jankiewicz, J. Khurgin, M. Kuisma, P. V. Kumar, J. Lischner, J. Liu, A. Marini, R. J. Maurer, N. S. Mueller, M. Parente, J. Y. Park, S. Reich, Y. Sivan, G. Tagliabue, L. Torrente-Murciano, M. Thangamuthu, X. Xiao, and A. Zayats, “Theory of hot electrons: general discussion,” Faraday Discuss. 214, 245–281 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

S. Mukherjee, L. Zhou, A. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, and N. J. Halas, “Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2,” J. Am. Chem. Soc. 136(1), 64–67 (2014).
[Crossref]

Light: Sci. Appl. (1)

Y. Dubi and Y. Sivan, “"hot electrons" in metallic nanostructures - non-thermal carriers or heating?” Light: Sci. Appl. 8(1), 89 (2019).
[Crossref]

Nano Lett. (3)

X. Zhang, X. Li, M. E. Reish, D. Zhang, N. Q. Su, Y. Gutíerrez, F. Moreno, W. Yang, H. O. Everitt, and J. Liu, “Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects,” Nano Lett. 18(3), 1714–1723 (2018).
[Crossref]

X. Li, X. Zhang, H. O. Everitt, and J. Liu, “Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production,” Nano Lett. 19(3), 1706–1711 (2019).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref]

Nanophotonics (2)

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

W. Li and J. Valentine, “Harvesting the loss: Surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

Nat. Chem. (1)

P. Christopher, H. Xin, and S. Linic, “Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,” Nat. Chem. 3(6), 467–472 (2011).
[Crossref]

Nat. Mater. (1)

P. Christopher, H. Xin, A. Marimuthu, and S. Linic, “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,” Nat. Mater. 11(12), 1044–1050 (2012).
[Crossref]

Nat. Nanotechnol. (2)

M. Moskovits, “The case for plasmon-derived hot carrier devices,” Nat. Nanotechnol. 10(1), 6–8 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

K. Setoura, Y. Okada, and S. Hashimoto, “CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Phys. Chem. Chem. Phys. 16(48), 26938–26945 (2014).
[Crossref]

Phys. Rev. B (2)

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85(23), 235403 (2012).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Phys. Rev. E (1)

I. Gurwich and Y. Sivan, “A metal nanosphere under intense continuous wave illumination - a unique case of non-perturbative nonlinear nanophotonics,” Phys. Rev. E 96(1), 012212 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily, “An Optically Accessible Pyrolysis Microreactor,” Rev. Sci. Instrum. 87(1), 014101 (2016).
[Crossref]

Sci. Adv. (1)

A. Block, M. Liebel, R. Yu, M. Spector, J. G. de Abajo, Y. Sivan, and N. F. van Hulst, “Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy,” Sci. Adv. 5(5), eaav8965 (2019).
[Crossref]

Science (3)

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362(6410), 69–72 (2018).
[Crossref]

Y. Sivan, J. Baraban, I. Un, and Y. Dubi, “Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”,” Science 364(6439), eaaw9367 (2019).
[Crossref]

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on "quantifying hot carrier and thermal contributions in plasmonic photocatalysis",” Science 364(6439), eaaw9545 (2019).
[Crossref]

Other (8)

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer: The blackbody, electromagnetic theory, and material properties, vol. 164 (Scientific and Technical Information Division, NASA, 1968).

Y. Sivan, I. W. Un, and Y. Dubi, “Thermal effects - an alternative mechanism for plasmonic-assisted photo-catalysis,” submitted; https://arxiv.org/abs/1902.03169 (2019).

( https://support.flir.com/DsDownload/Assets/55001-0102-en-US.html )

https://www.findlight.net/front-media/products/datasheet/WhiteLase_SC400_UV_v1.pdf

https://www.gophotonics.com/products/lasers/nkt-photonics/29-650-wl-sc-400-8 , https://www.nktphotonics.com/lasers-fibers/product/superk-extreme-fianium-supercontinuum-lasers and https://www.nktphotonics.com/wp-content/uploads/sites/3/2018/12/superk-ext-fiu-spectral-power-density-v2.jpg

( https://flir.custhelp.com/app/utils/fl_fovCalc/pn/55001-0102/ret_url/%252Fapp%252Ffl_download_datasheets%252Fid%252F20 )

( http://www.cctvcentersl.es/upload/Manuales/A3xxx_A6xxx_manual_eng.pdf , page 85)

(FLIR A615, http://www.cctvcentersl.es/upload/Manuales/A3xxx_A6xxx_manual_eng.pdf , page 85)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the electron distribution in a metal illuminated by continuous wave (CW) radiation. The blue solid line represents the equilibrium electron distribution in the absence of illumination. The orange dashed line represents the electron distribution under illumination. It consists of thermal electrons near the Fermi energy that obey the Fermi-Dirac statistics, and non-thermal (the so-called “hot”) electrons in two $\hbar \omega$-wide shoulders far from the Fermi energy, which are not part of the Fermi-Dirac distribution.
Fig. 2.
Fig. 2. Fig. 1 of [9], showing a schematic of the experimental setup. The distance between the thermocouple and the sample is $3-5$ mm. The distance from the camera to the sample is not specified.
Fig. 3.
Fig. 3. (This image is best viewed as a high resolution color image) (a) Fig. S11 of [6]. The image is clearly blurred (out-of-focus) and the camera settings are clearly left at their default values (Distance $= 3.3$ ft and Emissivity $= 0.95$). As explained in the text, these are very unlikely to be suitable for the experimental conditions. (b) As a comparison, we show an image of an object [24] of the same size as the pellet ($2$ mm diameter tube, seen yellow-white in the center-right of the image) taken by the same camera model (equipped with a 100 $\mu m$ closeup lens, to boot). Improved image sharpness is apparent with correct focusing, but note the difficulty of obtaining sufficient resolution (and therefore accurate temperature measurements) even with the magnifying lens. Other hot(ter) objects that are out of focus seem to be cooler than their actual temperature.
Fig. 4.
Fig. 4. A schematic illustration of the temperature profile in the photocataltysis and thermocatalysis experiments. The vertical gradients are opposite in the two experiments, such that the thermocatalysis control experiment does not mimic correctly the conditions of the photocatalysis experiment.
Fig. 5.
Fig. 5. Left panels: reaction rate as a function (inverse) temperature, points are data from Zhou et al. [6] (the data is available in Appendix B). The solid lines are fits to an Arrhenius form with varying values of $a$. Right panels: the resulting activation energy as a function of intensity, going from a strongly intensity-dependent activation energy (this is what is plotted in Fig. 2C of Ref. [6]), all the way to an essentially intensity-independent activation energy for $a=180$ K/W cm$^{-2}$.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( I i n c ) = T 0 + a I i n c + b I i n c 2 .
α I = h ( T ) ( T T 0 ) + A ( T ) ( T 4 T 0 4 ) .
P r a d / A = σ ( T 4 T 0 4 ) ,
P n o n r a d / V = G p h e n v ( T T 0 ) ,

Metrics