Abstract

Color-shift keying (CSK) is a modulation scheme in RGB-LED based visible light communication (VLC) where each symbol is mapped into a color of the visible spectrum. According to the IEEE 802.15.7 standard, nine valid combinations of symbols exist to construct 4, 8 or 16-CSK constellations. However, to the best of our knowledge, no formal rules are specified to determine which design performs better among the nine proposed. In this work, we presented a heuristic, machine learning-based approach to determine the best performing 8-CSK constellation and the most suitable algorithm to classify received 8-CSK modulated signals in terms of classification accuracy and bit-error rate (BER). The constellation built on the triangle with vertices at {429, 509, 564} nm scored a BER at 14 dB of 2.3E-3, 3.1E-4, 4.9E-5 and 1.6E-4 for each of the proposed algorithms that are several dBs lower than the worst performing constellations designed on the triangles {429, 564, 753} nm, {429, 564, 703} nm and {429, 564, 656} nm, demonstrating that indeed there exists a difference among the proposed designs independently of the adopted decision strategy and consequently room for improvement for the existing CSK standard.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiuser CSK scheme for indoor visible light communications

J.M. Luna-Rivera, R. Perez-Jimenez, J. Rabadan-Borjes, J. Rufo-Torres, V. Guerra, and C. Suarez-Rodriguez
Opt. Express 22(20) 24256-24267 (2014)

CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm

Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 28(2) 2427-2432 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. Ericsson, “More than 50 billion connected devices,” White Paper14(1) (2011).
  2. L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
    [Crossref]
  3. M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Broadcast Telev. Receivers 50(1), 100–107 (2004).
    [Crossref]
  5. G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw. 3(1), 56–65 (2011).
    [Crossref]
  6. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
    [Crossref]
  7. I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
    [Crossref]
  8. K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
    [Crossref]
  9. IEEE Standard for Local and Metropolitan area networks - Part 15.7: “Short-Range Wireless Optical Communication Using Visible Light”, (2011).
  10. S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  11. A. Yokoi, J. Son, and T. Bae, “More description about CSK constellation,” IEEE802(7), 3–46 (2010).
  12. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).
  13. B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).
  14. E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” IEEE Globecom Workshops, (2012).
  15. A. E. Aziz, K. T. Wong, and J. C. Chen, “Color-shift keying—How its largest obtainable “minimum distance” depends on its preset operating chromaticity and constellation size,” J. Lightwave Technol. 35(13), 2724–2733 (2017).
    [Crossref]
  16. R. J. Drost and B. M. Sadler, “Constellation design for color-shift keying using billiards algorithms,” IEEE Globecom Workshops, (2010).
  17. Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).
  18. E. Monteiro and S. Hranilovic, “Design and Implementation of Color-Shift Keying for Visible Light Communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
    [Crossref]
  19. C. Cortes and V. Vapnik, “Support-vector networks,” Int. J. Mach. Learn. Cybern. 20(3), 273–297 (1995).
    [Crossref]
  20. R. E. Wright, “Logistic regression.” (1995).
  21. T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967).
    [Crossref]
  22. L. K. Hansen and S. Peter, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990).
    [Crossref]
  23. J. Morovič, “Color gamut mapping,” Vol. 10. John Wiley & Sons (2008).
  24. M. Wood “MacAdam ellipses,” Out of the Wood, Mike Wood Consulting LLC. (retrieved on Jun. 8, 2011). Retrieved from the internet: URL: http://www.mikewoodconsulting.com/articles/Protocol%20Fall202010 (2010).

2019 (1)

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

2017 (1)

2014 (1)

2012 (2)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

2011 (2)

2009 (1)

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Broadcast Telev. Receivers 50(1), 100–107 (2004).
[Crossref]

2001 (1)

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
[Crossref]

1995 (1)

C. Cortes and V. Vapnik, “Support-vector networks,” Int. J. Mach. Learn. Cybern. 20(3), 273–297 (1995).
[Crossref]

1990 (1)

L. K. Hansen and S. Peter, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990).
[Crossref]

1967 (1)

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967).
[Crossref]

Akanegawa, M.

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
[Crossref]

Aziz, A. E.

Bae, T.

A. Yokoi, J. Son, and T. Bae, “More description about CSK constellation,” IEEE802(7), 3–46 (2010).

Bai, B.

B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Chen, J. C.

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

Ciaramella, E.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

Cortes, C.

C. Cortes and V. Vapnik, “Support-vector networks,” Int. J. Mach. Learn. Cybern. 20(3), 273–297 (1995).
[Crossref]

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

Cover, T.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967).
[Crossref]

Drost, R. J.

R. J. Drost and B. M. Sadler, “Constellation design for color-shift keying using billiards algorithms,” IEEE Globecom Workshops, (2010).

Ericsson, L.

L. Ericsson, “More than 50 billion connected devices,” White Paper14(1) (2011).

Fan, Y.

B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).

Gnawali, O.

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

Hansen, L. K.

L. K. Hansen and S. Peter, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990).
[Crossref]

Hart, P.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967).
[Crossref]

He, Q.

B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).

Ho, C. H.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Hranilovic, S.

E. Monteiro and S. Hranilovic, “Design and Implementation of Color-Shift Keying for Visible Light Communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
[Crossref]

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” IEEE Globecom Workshops, (2012).

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Huang, W.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).

Inan, B.

Kamalakis, T.

Khalid, A. M.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Broadcast Telev. Receivers 50(1), 100–107 (2004).
[Crossref]

Lee, K.

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

Lim, S. K.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Matheus, L. E. M.

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

Monteiro, E.

E. Monteiro and S. Hranilovic, “Design and Implementation of Color-Shift Keying for Visible Light Communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
[Crossref]

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” IEEE Globecom Workshops, (2012).

Morovic, J.

J. Morovič, “Color gamut mapping,” Vol. 10. John Wiley & Sons (2008).

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Broadcast Telev. Receivers 50(1), 100–107 (2004).
[Crossref]

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
[Crossref]

Neokosmidis, I.

Ntogari, G.

Park, H.

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

Peter, S.

L. K. Hansen and S. Peter, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990).
[Crossref]

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Sadler, B. M.

R. J. Drost and B. M. Sadler, “Constellation design for color-shift keying using billiards algorithms,” IEEE Globecom Workshops, (2010).

Son, J.

A. Yokoi, J. Son, and T. Bae, “More description about CSK constellation,” IEEE802(7), 3–46 (2010).

Sphicopoulos, T.

Tanaka, Y.

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
[Crossref]

Vapnik, V.

C. Cortes and V. Vapnik, “Support-vector networks,” Int. J. Mach. Learn. Cybern. 20(3), 273–297 (1995).
[Crossref]

Vieira, A. B.

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

Vieira, L. F.

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

Vieira, M. A.

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

Walewski, J. W.

Wang, Q.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).

Wang, Z.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Wong, K. T.

Wood, M.

M. Wood “MacAdam ellipses,” Out of the Wood, Mike Wood Consulting LLC. (retrieved on Jun. 8, 2011). Retrieved from the internet: URL: http://www.mikewoodconsulting.com/articles/Protocol%20Fall202010 (2010).

Wright, R. E.

R. E. Wright, “Logistic regression.” (1995).

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Xu, Z.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).

B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).

Yokoi, A.

A. Yokoi, J. Son, and T. Bae, “More description about CSK constellation,” IEEE802(7), 3–46 (2010).

IEEE Commun. Mag. (1)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials 21(4), 3204–3237 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

IEEE Trans. Broadcast Telev. Receivers (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Broadcast Telev. Receivers 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Inf. Theory (1)

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967).
[Crossref]

IEEE Trans. Intell. Transp. Syst. (1)

M. Akanegawa, Y. Tanaka, and M. Nakagawa, “M. Basic study on traffic information system using LED traffic lights,” IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. K. Hansen and S. Peter, “Neural network ensembles,” IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990).
[Crossref]

Int. J. Mach. Learn. Cybern. (1)

C. Cortes and V. Vapnik, “Support-vector networks,” Int. J. Mach. Learn. Cybern. 20(3), 273–297 (1995).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Other (11)

R. E. Wright, “Logistic regression.” (1995).

IEEE Standard for Local and Metropolitan area networks - Part 15.7: “Short-Range Wireless Optical Communication Using Visible Light”, (2011).

J. Morovič, “Color gamut mapping,” Vol. 10. John Wiley & Sons (2008).

M. Wood “MacAdam ellipses,” Out of the Wood, Mike Wood Consulting LLC. (retrieved on Jun. 8, 2011). Retrieved from the internet: URL: http://www.mikewoodconsulting.com/articles/Protocol%20Fall202010 (2010).

L. Ericsson, “More than 50 billion connected devices,” White Paper14(1) (2011).

A. Yokoi, J. Son, and T. Bae, “More description about CSK constellation,” IEEE802(7), 3–46 (2010).

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “Long distance indoor high speed visible light communication system based on RGB LEDs,” Proceedings of the Asia Commun. Photon. Conf, 1–3 (2012).

B. Bai, Q. He, Z. Xu, and Y. Fan, “The color shift key modulation with non-uniform signaling for visible light communication,” IEEE Intern. Conf. on Comm. in China Workshops, 37–42, (2012).

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” IEEE Globecom Workshops, (2012).

R. J. Drost and B. M. Sadler, “Constellation design for color-shift keying using billiards algorithms,” IEEE Globecom Workshops, (2010).

Z. Wang, Q. Wang, W. Huang, and Z. Xu, “Visible Light Communications,” IEEE Press, Wiley (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The seven color bands of the visible light spectrum.
Fig. 2.
Fig. 2. Vertices of the valid CSK combinations represented on the 1931 CIE diagram.
Fig. 3.
Fig. 3. The channel model of RGB-LED based visible light communication.
Fig. 4.
Fig. 4. Classification accuracies for the nine 8-CSK combinations at SNR = 10 dB.
Fig. 5.
Fig. 5. Minimum BER ordered for the nine 8-CSK combinations at SNR = 10 dB.
Fig. 6.
Fig. 6. Classified 8-CSK received signal according to their corresponding best performing algorithm for the nine combinations at SNR = 10 dB. White squares represent the original color coordinate of each symbol, the colored dots the received clustered coordinate representing a same symbol.
Fig. 7.
Fig. 7. BER curves of the nine combinations with SNR ranging between 1-16 dB for each of the four classification algorithms.
Fig. 8.
Fig. 8. Measured and fitted BER curves of the four classification algorithms with SNR ranging between 1-16 dB for each of the nine combinations.

Tables (3)

Tables Icon

Table 1. Valid CSK color band combinations.

Tables Icon

Table 2. The adopted neural network structure

Tables Icon

Table 3. Top four combinations ordered by SNR at which the FEC level is reached.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

pm=[Pi,mPj,mPk,m]T
xp=Pixi+Pjxj+Pkxk
yp=Piyi+Pjyj+Pkyk
Pi+Pj+Pk=1
H=[hiihijhikhjihjj˙hjkhkihkjhkk]
r=Hpm+n
pm=[Pi,mPj,mPk,m]T=H1pm

Metrics