Abstract

We propose a special imaging technique as a low-cost solution to profile hidden surfaces through scattering media. The method exploits the asymmetry property of a pair of identical laser beams in propagation through the scattering medium, where scanning the pointing of the paired laser beams allows for a collection of target samples to reconstruct the surface shape of a hidden object. In application, our new method provides alternative solutions to many real-world problems, such as medical imaging, optical communication, environmental sensing, and underwater surveillance that require dealing with a scattering environment that often obscures direct sight of a target area.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Research on laser range profiles based on spatial domain

Yanhui Li, Di Gao, and Hong Liao
OSA Continuum 3(4) 1049-1057 (2020)

Machine-learning enables image reconstruction and classification in a “see-through” camera

Zhimeng Pan, Brian Rodriguez, and Rajesh Menon
OSA Continuum 3(3) 401-409 (2020)

Effect of polarization in evanescent wave amplification for the enhancement of scattering of nanoparticles on surfaces

D. Kolenov, H. P. Urbach, and S. F. Pereira
OSA Continuum 3(4) 742-758 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (per pact) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
    [Crossref]
  2. Y. Jauregui-Sánchez, P. Clemente, J. Lancis, and E. Tajahuerce, “Single-pixel imaging with fourier filtering: application to vision through scattering media,” Opt. Lett. 44(3), 679–682 (2019).
    [Crossref]
  3. F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich, “Imaging in scattering media using correlation image sensors and sparse convolutional coding,” Opt. Express 22(21), 26338–26350 (2014).
    [Crossref]
  4. N. Alem, F. Pellen, G. L. Brun, and B. L. Jeune, “Extra-cavity radiofrequency modulator for a lidar radar designed for underwater target detection,” Appl. Opt. 56(26), 7367–7372 (2017).
    [Crossref]
  5. S. Jeong, D.-Y. Kim, Y.-R. Lee, W. Choi, and W. Choi, “Iterative optimization of time-gated reflectance for the efficient light energy delivery within scattering media,” Opt. Express 27(8), 10936–10945 (2019).
    [Crossref]
  6. T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27(13), 18858–18868 (2019).
    [Crossref]
  7. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Correlation gating quantifies the optical properties of dynamic media in transmission,” Opt. Lett. 43(23), 5881–5884 (2018).
    [Crossref]
  8. M. Alayed, M. A. Naser, I. Aden-Ali, and M. J. Deen, “Time-resolved diffuse optical tomography system using an accelerated inverse problem solver,” Opt. Express 26(2), 963–979 (2018).
    [Crossref]
  9. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small volume element,” J. Opt. Soc. Am. A 21(1), 71–87 (2004).
    [Crossref]
  10. D. Arnush, “Underwater light-beam propagation in the small-angle-scattering approximation,” J. Opt. Soc. Am. 62(9), 1109–1111 (1972).
    [Crossref]
  11. R. Sanchez and N. J. McCormick, “Analytic beam spread function for ocean optics applications,” Appl. Opt. 41(30), 6276–6288 (2002).
    [Crossref]
  12. A. Trumpp, P. L. Bauer, S. Rasche, H. Malberg, and S. Zaunseder, “The value of polarization in camera-based photoplethysmography,” Biomed. Opt. Express 8(6), 2822–2834 (2017).
    [Crossref]
  13. H. Lu, Y. Li, H. Li, L. Yuan, Q. Liu, Y. Sun, and S. Tong, “Single-trial estimation of the cerebral metabolic rate of oxygen with imaging photoplethysmography and laser speckle contrast imaging,” Opt. Lett. 40(7), 1193–1196 (2015).
    [Crossref]
  14. Y. Gu, C. Carrizo, A. A. Gilerson, P. C. Brady, M. E. Cummings, M. S. Twardowski, J. M. Sullivan, A. I. Ibrahim, and G. W. Kattawar, “Polarimetric imaging and retrieval of target polarization characteristics in underwater environment,” Appl. Opt. 55(3), 626–637 (2016).
    [Crossref]

2019 (3)

2018 (2)

2017 (2)

2016 (1)

2015 (1)

2014 (1)

2011 (1)

2004 (1)

2002 (1)

1972 (1)

Aden-Ali, I.

Alayed, M.

Alem, N.

Arnush, D.

Bauer, P. L.

Borycki, D.

Brady, P. C.

Brun, G. L.

Carrizo, C.

Choi, W.

Clemente, P.

Cummings, M. E.

Deen, M. J.

Funatomi, T.

Gilerson, A. A.

Gu, Y.

Heide, F.

Heidrich, W.

Hovenier, J. W.

Hullin, M. B.

Ibrahim, A. I.

Jauregui-Sánchez, Y.

Jeong, S.

Jeune, B. L.

Jose, J.

Kattawar, G. W.

Kholiqov, O.

Kim, D.-Y.

Kolb, A.

Lancis, J.

Lee, Y.-R.

Li, H.

Li, Y.

Liu, Q.

Lu, H.

Mackowski, D. W.

Malberg, H.

Manohar, S.

McCormick, N. J.

Mishchenko, M. I.

Mukaigawa, Y.

Muraji, T.

Naser, M. A.

Pellen, F.

Piras, D.

Rasche, S.

Resink, S.

Sanchez, R.

Slump, C. H.

Srinivasan, V. J.

Steenbergen, W.

Sullivan, J. M.

Sun, Y.

Tajahuerce, E.

Tanaka, K.

Tong, S.

Trumpp, A.

Twardowski, M. S.

van Hespen, J. C. G.

van Leeuwen, T. G.

Willemink, R. G. H.

Xiao, L.

Yuan, L.

Zaunseder, S.

Appl. Opt. (3)

Biomed. Opt. Express (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (3)

Supplementary Material (2)

NameDescription
» Visualization 1       This is a visualization for Fig. 3 in the submitted manuscript to Optics Letters.
» Visualization 2       This is a visualization for Fig. 6 in the submitted manuscript to Optics Letters.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Illustration of deriving the differential term in Eq. (2).
Fig. 2.
Fig. 2. System setup and diagram for experimental validations.
Fig. 3.
Fig. 3. Sampled camera image of the pair of the probing lasers (see Visualization 1)
Fig. 4.
Fig. 4. Illustration of using the less affected areas for the asymmetry algorithm.
Fig. 5.
Fig. 5. Experimental results on extracting the relative surface tilts.
Fig. 6.
Fig. 6. Sampled camera images of (a) the pair of the probing lasers on a target that has surface jumps (see Visualization 2), and (b) imaging result with the the bright green LED array as an illumination source.
Fig. 7.
Fig. 7. (a) Experimental setup to compare imaging effects between the two beam illumination and the bright LED array illumination; (b) External view of the scattering media with the occluded target; (c) Side view of the two beam projections onto the target’s surface.
Fig. 8.
Fig. 8. Surface profile reconstruction result in revealing the well-cutout along the horizontal scanning direction.

Tables (1)

Tables Icon

Table 1. Error Statistics for the Tested Small Surface Tilts

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h ( r , z ) = e x p ( s z r 2 w 0 2 ) I r r 0 + g π R 2 e x p ( s z r 2 R 2 ) .
Δ h ( r , z ) = l θ g π R 2 z ( 3 s z + 3 r 2 R 2 ) e x p ( s z r 2 R 2 ) I r > r 0 .
r 0 2 π r Δ h ( r , z ) d r = l d θ g π 2 R 2 z ( 6 R 2 + 3 r 0 2 s z R 2 ) e x p ( r 0 2 R 2 ) l d θ g π 2 R 4 z ( 6 τ ) .

Metrics