Abstract

Based on the theory of surface plasmon polaritons (SPPs), a metal–insulator–metal (MIM) waveguide structure consisting of a streamlined resonant cavity and a baffle is proposed. When the incident light waves enter into the waveguide structure, through the interaction between the three discrete states and the continuous state by the streamlined cavity and the baffle, three sharp asymmetric Fano resonance spectra can be formed. The transmission spectrum characteristics of the structure are simulated and analyzed by the finite element method (FEM), and the effects of structure parameters and refractive index on the transmission spectra characteristics are studied. By optimizing the structure parameters, it is found that the performance of the system can be adjusted and optimized flexibly by changing the structure parameters, the figure of merit (FOM) can reach 1.99 × 106, and the sensitivity is 2960 nm/RIU. This flexible Fano resonant-structure has several applications in micro-nano biosensor, nonlinear optics, and slow light devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure

Zhengfeng Li, Kunhua Wen, Li Chen, Liang Lei, Jinyun Zhou, Dongyue Zhou, Yihong Fang, and Bingye Wu
Appl. Opt. 58(18) 4878-4883 (2019)

Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system

Yonghao Chen, Li Chen, Kunhua Wen, Yihua Hu, and Weitao Lin
Appl. Opt. 59(5) 1484-1490 (2020)

Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system

Shilei Li, Yunyun Zhang, Xiaokang Song, Yilin Wang, and Li Yu
Opt. Express 24(14) 15351-15361 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
    [Crossref]
  2. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [Crossref]
  3. E. N. Economous, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  4. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref]
  5. J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
    [Crossref]
  6. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [Crossref]
  7. Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
    [Crossref]
  8. X. L. Zhong, “A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal bragg reflector,” Acta Photonica Sinica 40(4), 537–541 (2011).
    [Crossref]
  9. J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
    [Crossref]
  10. C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
    [Crossref]
  11. J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
    [Crossref]
  12. Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
    [Crossref]
  13. Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
    [Crossref]
  14. H. Lu, X. M. Liu, and D. Mao, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref]
  15. C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
    [Crossref]
  16. L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
    [Crossref]
  17. A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
    [Crossref]
  18. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
    [Crossref]
  19. J. Cai, Y. J. Zhou, Y. Zhang, and Q. Y. Li, “Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids,” Opt. Express 26(19), 25460 (2018).
    [Crossref]
  20. X. Chen and W. H. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
    [Crossref]
  21. J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [Crossref]
  22. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  23. J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
    [Crossref]
  24. L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
    [Crossref]
  25. Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
    [Crossref]
  26. K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
    [Crossref]
  27. K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
    [Crossref]
  28. X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
    [Crossref]
  29. S. Paul and M. Ray, “Multispectral switching using Fano resonance and plasmon-Induced transparency in a plasmonic waveguide-coupled resonator system,” Plasmonics 14(5), 1113–1122 (2019).
    [Crossref]
  30. S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
    [Crossref]
  31. Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
    [Crossref]
  32. B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
    [Crossref]
  33. N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
    [Crossref]
  34. J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
    [Crossref]
  35. D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
    [Crossref]
  36. J. W. Qi, Z. Q. Chen, and J. Chen, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref]
  37. X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
    [Crossref]
  38. J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
    [Crossref]
  39. Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
    [Crossref]
  40. K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
    [Crossref]

2019 (3)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
[Crossref]

S. Paul and M. Ray, “Multispectral switching using Fano resonance and plasmon-Induced transparency in a plasmonic waveguide-coupled resonator system,” Plasmonics 14(5), 1113–1122 (2019).
[Crossref]

2018 (4)

X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

J. Cai, Y. J. Zhou, Y. Zhang, and Q. Y. Li, “Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids,” Opt. Express 26(19), 25460 (2018).
[Crossref]

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

2017 (7)

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

X. Chen and W. H. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref]

J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

2016 (2)

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

2015 (6)

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
[Crossref]

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
[Crossref]

2014 (4)

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

J. W. Qi, Z. Q. Chen, and J. Chen, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref]

J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
[Crossref]

2013 (2)

X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

2012 (3)

H. Lu, X. M. Liu, and D. Mao, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

2011 (2)

X. L. Zhong, “A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal bragg reflector,” Acta Photonica Sinica 40(4), 537–541 (2011).
[Crossref]

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

2010 (3)

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

2008 (1)

2007 (1)

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

2005 (1)

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

1969 (1)

E. N. Economous, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Bao, K.

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

Bardhan, R.

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

Cai, J.

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

Chen, J.

Chen, J. J.

Chen, L.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
[Crossref]

Chen, X.

X. Chen and W. H. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref]

Chen, Y. H.

Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
[Crossref]

Chen, Z.

J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Chen, Z. H.

S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Chen, Z. Q.

Cui, L. N.

Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Cui, Y. P.

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

Duan, G. Y.

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Economous, E. N.

E. N. Economous, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Fan, J. A.

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

Fan, S. H.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

Fan, W. H.

X. Chen and W. H. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gao, S.

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

Gerislioglu, B.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Ghoreishi, S. A.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Gong, Q. H.

Halas, R. N.

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

He, M.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

Heylman, K. D.

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

Hu, G. H.

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

Hu, Y. H.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
[Crossref]

Hu, Z. D.

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

Huang, Q. L.

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Huang, X. G.

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Lei, L.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Li, Q. Y.

Li andC, H. J.

X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Liang, X. Y.

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

Lin, X. S.

Liu, D. D.

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

Liu, G. D.

X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Liu, J. N.

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Liu, K. K.

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Liu, S. D.

S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Liu, X. M.

Lu, H.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

Luo, X. G.

T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Manickam, P.

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Manoharan, N. V.

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

Mao, D.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

Meng, Z. M.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Niu, Y. Y.

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

Paul, S.

S. Paul and M. Ray, “Multispectral switching using Fano resonance and plasmon-Induced transparency in a plasmonic waveguide-coupled resonator system,” Plasmonics 14(5), 1113–1122 (2019).
[Crossref]

Peng, X.

X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Qi, J. W.

Qiao, L. T.

L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
[Crossref]

Qu, S.

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

Ramezani, Z.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Ray, M.

S. Paul and M. Ray, “Multispectral switching using Fano resonance and plasmon-Induced transparency in a plasmonic waveguide-coupled resonator system,” Plasmonics 14(5), 1113–1122 (2019).
[Crossref]

Rea, M. T.

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

Sang, T.

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

Shi, F. H.

Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

Singamaneni, S.

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Smith, K. C.

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

Song, C.

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

Song, X. K.

J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Sun, C. W.

Sun, L.

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

Tang, B. J.

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

Tang, J.

Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

Thakkar, N. H.

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

Veronis, G.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

Wang, J. C.

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

Wang, L. L.

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Wang, W. H.

Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Wang, X. F.

X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Wang, Z. S.

L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
[Crossref]

Wen, K. H.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Wu, N.

X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Wu, Y. K.

T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Xia, S. X.

X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Xia, X. S.

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

Xu, T.

T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Xu, W.

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Xue, C. Y.

Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

Yang, J. H.

J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
[Crossref]

Yang, L.

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Yang, L. Z.

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Yang, Y. B.

S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

Yu, L.

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Yun, B. F.

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

Zhang, G. M.

L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
[Crossref]

Zhang, J. X.

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zhang, L. D.

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zhang, R. H.

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

Zhang, Y.

Zhang, Z.

Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
[Crossref]

Zhang, Z. D.

Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

Zhong, X. L.

X. L. Zhong, “A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal bragg reflector,” Acta Photonica Sinica 40(4), 537–541 (2011).
[Crossref]

Zhou, J. Y.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Zhou, Y. J.

ACS Sens. (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, and A. Kaushik, “Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Acta Photonica Sinica (1)

X. L. Zhong, “A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal bragg reflector,” Acta Photonica Sinica 40(4), 537–541 (2011).
[Crossref]

AIP Adv. (1)

J. C. Wang, L. Sun, Z. D. Hu, and X. Y. Liang, “Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide,” AIP Adv. 4(12), 123006 (2014).
[Crossref]

Appl. Phys. Lett. (2)

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[Crossref]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[Crossref]

IEEE Photonics J. (2)

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

Z. Chen, X. K. Song, G. Y. Duan, L. L. Wang, and L. Yu, “Multiple fano resonances control in mim side-coupled cavities systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. F. Wang, G. D. Liu, and S. X. Xia, “Dynamically Tunable Fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, and G. Y. Duan, “A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

J. Mod. Opt. (1)

C. Song, S. Qu, J. C. Wang, B. J. Tang, and X. S. Xia, “Plasmonic tunable filter based on trapezoid resonator waveguide,” J. Mod. Opt. 62(17), 1400–1404 (2015).
[Crossref]

J. Phys. Chem. C (1)

S. D. Liu, Y. B. Yang, and Z. H. Chen, “Excitation of multiple Fano resonances in plasmonic clusters with D-2 h point group symmetry,” J. Phys. Chem. C 117(27), 14218–14228 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Nano Lett. (3)

J. A. Fan, K. Bao, R. Bardhan, R. N. Halas, and N. V. Manoharan, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref]

N. H. Thakkar, M. T. Rea, K. C. Smith, and K. D. Heylman, “”Sculpting Fano resonances to control photonic-plasmonic hybridization,”,” Nano Lett. 17(11), 6927–6934 (2017).
[Crossref]

J. N. Liu, Q. L. Huang, K. K. Liu, and S. Singamaneni, “Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling,” Nano Lett. 17(12), 7569–7577 (2017).
[Crossref]

Nat. Commun. (2)

D. Chanda, K. Shigeta, T. Truong, and E. Lui, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref]

T. Xu, Y. K. Wu, and X. G. Luo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, and R. Adato, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2012).
[Crossref]

Opt. Commun. (2)

X. Peng, H. J. Li andC, and N. Wu, “Research on transmission characteristics of aperture-coupled square-ring resonatorbased filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

L. T. Qiao, G. M. Zhang, and Z. S. Wang, “Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons,” Opt. Commun. 433, 144–149 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

E. N. Economous, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. Appl. (1)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Plasmonics (10)

Z. Chen, W. H. Wang, and L. N. Cui, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

J. C. Wang, Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. Gao, “Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system,” Plasmonics 13(2), 609–616 (2018).
[Crossref]

Z. Zhang, F. H. Shi, and Y. H. Chen, “” Tunable multichannel plasmonic filter based on coupling-induced mode splitting,”,” Plasmonics 10(1), 139–144 (2015).
[Crossref]

J. H. Yang, X. K. Song, and Z. Chen, “Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor,” Plasmonics 12(6), 1665–1672 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, and L. Chen, “Fano resonance with ultra-high figure of merits based on plasmonic metal-Insulator-Metal waveguide,” Plasmonics 10(1), 27–32 (2015).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, “Fano resonance based on end-coupled cascaded-ring MIM waveguides structure,” Plasmonics 12(6), 1875–1880 (2017).
[Crossref]

B. F. Yun, R. H. Zhang, G. H. Hu, and Y. P. Cui, “Ultra sharp Fano resonances Induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11(4), 1157–1162 (2016).
[Crossref]

S. Paul and M. Ray, “Multispectral switching using Fano resonance and plasmon-Induced transparency in a plasmonic waveguide-coupled resonator system,” Plasmonics 14(5), 1113–1122 (2019).
[Crossref]

Z. D. Zhang, J. Tang, and C. Y. Xue, “Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator,” Plasmonics 12(4), 1007–1013 (2017).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (2)

X. Chen and W. H. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref]

L. Yang, J. C. Wang, L. Z. Yang, and Z. D. Hu, “Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory,” Sci. Rep. 8(1), 2560 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of coupled streamlined resonant cavity structure.
Fig. 2.
Fig. 2. The transmission spectra corresponding to different ratio coefficients between a and b.
Fig. 3.
Fig. 3. Formation process of Fano resonance. (a)Transmissions spectra when only a streamlined cavity and only a baffle alone. (b) Fano resonance spectra formed by coupled streamlined cavity and baffle with MIM waveguide
Fig. 4.
Fig. 4. Distribution of steady-state magnetic field $( {|{{H_z}} |^2}) $ . (a) λ=1460 nm, (b) λ=1608 nm, (c) λ=2216 nm, (d) λ=3118 nm.
Fig. 5.
Fig. 5. Effect of structural parameters b on transmission spectra.(a) The transmission spectra corresponding to different parameters b,(b) Wavelength distribution of wave peaks and dips corresponding to different parameters b.
Fig. 6.
Fig. 6. Effect of structural parameters l on transmission spectra. (a) The transmission spectra corresponding to different parameters l,(b) Wavelength distribution of wave peaks and dips corresponding to different parameters l
Fig. 7.
Fig. 7. Optimized FOM for parameter l. (a) FOM corresponding to different l, (b) Optimized transmission spectrum and FOM.
Fig. 8.
Fig. 8. Effect of refractive index of the medium n on transmission spectra. (a) The transmission spectra corresponding to different n, (b) Wavelength distribution of wave peaks and dips corresponding to different n.

Tables (1)

Tables Icon

Table 1. Comparison of Sensitivity and FOM of Streamlined Resonant Cavity Waveguide Structure with Other Structures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε d ( ω ) = ε ω p 2 ω ( ω + i ω γ )
T = | H 1 | 2 / | H 1 | 2 | H 0 | 2 | H 0 | 2
ε d k m + ε m k d coth ( i k d 2 W ) = 0
λ  =  n eff L eff j ϕ / ϕ π π
S =  d λ / d λ d n ( λ ) d n ( λ )
FO M  =  | d T ( λ ) / d T ( λ ) ( d n ( λ ) T ( λ ) ) ( d n ( λ ) T ( λ ) ) |
FOM = Max ( FO M )

Metrics