Abstract

The ytterbium atom is widely used in the fields of atomic physics, cavity quantum electrodynamics, quantum information processing, and optical frequency standards. There is however a strong dispersion among the reported values of the 1S0 → 1P1 transition frequency. In this article, we present two independent measurements of the absolute frequency of this transition performed with two different wavemeters using atomic fluorescence spectroscopy. The cancellation of Doppler shifts is obtained by fine tuning the angle between the probe laser and the atomic beam. The resulting 174Yb isotope transition frequency is estimated to be 751 526 537 ± 27 MHz.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absolute frequency and isotope shift measurements of mercury 1S03P1 transition

Marcin Witkowski, Grzegorz Kowzan, Rodolfo Munoz-Rodriguez, Roman Ciuryło, Piotr Szymon Żuchowski, Piotr Masłowski, and Michał Zawada
Opt. Express 27(8) 11069-11083 (2019)

Sub-Doppler cooling of ytterbium with the 1S01P1 transition including 171Yb (I=1/2)

N. Kostylev, E. Ivanov, M. E. Tobar, and J. J. McFerran
J. Opt. Soc. Am. B 31(7) 1614-1620 (2014)

Polarization spectroscopy of 1S01P1 transition of neutral ytterbium isotopes in hollow cathode lamp

Shaobing Zhu, Tao Chen, Xiaolin Li, and Yuzhu Wang
J. Opt. Soc. Am. B 31(10) 2302-2309 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
    [Crossref]
  2. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
    [Crossref]
  3. M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
    [Crossref]
  4. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
    [Crossref]
  5. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
    [Crossref]
  6. J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
    [Crossref]
  7. W. F. Meggers and J. L. Tech, “The first spectrum of ytterbium (Yb I),” J. Res. Natl. Bur. Stand. (U. S.) 83(1), 13 (1978).
    [Crossref]
  8. D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
    [Crossref]
  9. A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
    [Crossref]
  10. K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
    [Crossref]
  11. M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
    [Crossref]
  12. A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .
  13. K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, “Isotope shifts and hyperfine splittings of the 398.8-nm Yb I line,” J. Opt. Soc. Am. B 10(5), 789–793 (1993).
    [Crossref]
  14. T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
    [Crossref]
  15. A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
    [Crossref]
  16. W.-L. Wang and X.-Y. Xu, “A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition,” Chin. Phys. B 19(12), 123202 (2010).
    [Crossref]
  17. Alvasources from Alvatec (now AlfaVakuo e.U.).
  18. Toptica DL100.
  19. Thorlabs PDF10A/M.
  20. HighFinesse WS/7 and WS8-2.
  21. K. Saleh, J. Millo, A. Didier, Y. Kersalé, and C. Lacroûte, “Frequency stability of a wavelength meter and applications to laser frequency stabilization,” Appl. Opt. 54(32), 9446 (2015).
    [Crossref]
  22. Using the inverse of the squared uncertainties as weights.
  23. R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
    [Crossref]
  24. Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
    [Crossref]
  25. Considering a Maxwell-Boltzmann distribution with most probable speed ${\boldsymbol{\mathcal{v}}}_\textrm {at}=\sqrt {\frac {2k_{\mathrm {B}}T}{M}}$vat=2kBTM, with kB the Boltzmann constant and M the mass of an ytterbium atom.

2018 (3)

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

2017 (1)

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

2016 (4)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
[Crossref]

2015 (1)

2014 (1)

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

2013 (1)

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

2010 (2)

W.-L. Wang and X.-Y. Xu, “A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition,” Chin. Phys. B 19(12), 123202 (2010).
[Crossref]

A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
[Crossref]

2005 (1)

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

2003 (1)

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

2001 (1)

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
[Crossref]

1993 (1)

1978 (1)

W. F. Meggers and J. L. Tech, “The first spectrum of ytterbium (Yb I),” J. Res. Natl. Bur. Stand. (U. S.) 83(1), 13 (1978).
[Crossref]

Aguilera, M. B.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Banerjee, A.

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

Barthwal, S.

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

Beaufils, Q.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Beloy, K.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Bennett, T.

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

Bergeson, S.

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
[Crossref]

Beugnon, J.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Bochinski, J. R.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
[Crossref]

Bongs, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Bouganne, R.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Brewer, S. M.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Brown, R. C.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Dareau, A.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Das, D.

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

Das, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Deilamian, K.

Didier, A.

Dodson, A.

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

Enomoto, K.

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Fasano, R. J.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Gerbier, F.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Gill, P.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Gillaspy, J. D.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, “Isotope shifts and hyperfine splittings of the 398.8-nm Yb I line,” J. Opt. Soc. Am. B 10(5), 789–793 (1993).
[Crossref]

Godun, R. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Gold Dahl, M. E.

M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
[Crossref]

Hensinger, W. K.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
[Crossref]

Hinkley, N.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Hizawa, N.

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Huntemann, N.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Johnson, L. A. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Jones, J. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Katori, H.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Kelleher, D. E.

Kersalé, Y.

King, S. A.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Kleinert, M.

M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
[Crossref]

Kobayashi, K.

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Kramida, A.

A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .

Krishna, A.

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

Lacroûte, C.

Lawrence, A. M.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Lea, S. N.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Lipphardt, B.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Loftus, T.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
[Crossref]

Ludlow, A. D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Margolis, H. S.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

McGrew, W. F.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

McKnight, Q.

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

McLoughlin, J. J.

A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
[Crossref]

Meggers, W. F.

W. F. Meggers and J. L. Tech, “The first spectrum of ytterbium (Yb I),” J. Res. Natl. Bur. Stand. (U. S.) 83(1), 13 (1978).
[Crossref]

Milani, G.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Millo, J.

Moriwaki, Y.

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Mossberg, T. W.

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
[Crossref]

Natarajan, V.

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

Nemitz, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Nicolodi, D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Nisbet-Jones, P. B. R.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Nizamani, A. H.

A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
[Crossref]

Oates, C. W.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Ohkubo, T.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Ohmae, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Peik, E.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Phillips, N. B.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Porto, J. V.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Ralchenko, Y.

A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .

Randall, J.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Rapol, U. D.

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

Reader, J.

A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .

Saleh, K.

Sanner, C.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Sansonetti, C. J.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Schioppo, M.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Scholl, M.

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Sherman, J. A.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Simien, C. E.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Sprenkle, T.

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

Suzuki, T.

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Szymaniec, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

Takamoto, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Tamm, C.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Tan, J. N.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Team, N. A.

A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .

Tech, J. L.

W. F. Meggers and J. L. Tech, “The first spectrum of ytterbium (Yb I),” J. Res. Natl. Bur. Stand. (U. S.) 83(1), 13 (1978).
[Crossref]

Ushijima, I.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Vitanov, N. V.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Wang, W.-L.

W.-L. Wang and X.-Y. Xu, “A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition,” Chin. Phys. B 19(12), 123202 (2010).
[Crossref]

Webster, S. C.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Weidt, S.

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

Wu, S.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Xu, X.-Y.

W.-L. Wang and X.-Y. Xu, “A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition,” Chin. Phys. B 19(12), 123202 (2010).
[Crossref]

Yoon, T. H.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

K. Enomoto, N. Hizawa, T. Suzuki, K. Kobayashi, and Y. Moriwaki, “Comparison of resonance frequencies of major atomic lines in 398–423 nm,” Appl. Phys. B: Lasers Opt. 122(5), 126 (2016).
[Crossref]

Chin. Phys. B (1)

W.-L. Wang and X.-Y. Xu, “A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition,” Chin. Phys. B 19(12), 123202 (2010).
[Crossref]

EPL (1)

M. B. Aguilera, R. Bouganne, A. Dareau, M. Scholl, Q. Beaufils, J. Beugnon, and F. Gerbier, “Non-linear relaxation of interacting bosons coherently driven on a narrow optical transition,” EPL 123(4), 40004 (2018).
[Crossref]

Europhys. Lett. (1)

A. Banerjee, U. D. Rapol, D. Das, A. Krishna, and V. Natarajan, “Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb,” Europhys. Lett. 63(3), 340–346 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Res. Natl. Bur. Stand. (U. S.) (1)

W. F. Meggers and J. L. Tech, “The first spectrum of ytterbium (Yb I),” J. Res. Natl. Bur. Stand. (U. S.) 83(1), 13 (1978).
[Crossref]

Nat. Photonics (2)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Phys. Rev. A (7)

D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine structure in the 399–nm1S0→1P1 line,” Phys. Rev. A 72(3), 032506 (2005).
[Crossref]

A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free Yb spectroscopy with the fluorescence spot technique,” Phys. Rev. A 82(4), 043408 (2010).
[Crossref]

M. Kleinert, M. E. Gold Dahl, and S. Bergeson, “Measurement of the Yb I 1 S0– 1P1 transition frequency at 399 nm using an optical frequency comb,” Phys. Rev. A 94(5), 052511 (2016).
[Crossref]

T. Loftus, J. R. Bochinski, and T. W. Mossberg, “Optical double-resonance cooled-atom spectroscopy,” Phys. Rev. A 63(2), 023402 (2001).
[Crossref]

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation of high-fidelity quantum control methods for multilevel systems,” Phys. Rev. A 98(4), 043414 (2018).
[Crossref]

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7 Li D2 lines,” Phys. Rev. A 87(3), 032504 (2013).
[Crossref]

Q. McKnight, A. Dodson, T. Sprenkle, T. Bennett, and S. Bergeson, “Comment on “laser cooling of 173Yb for isotope separation and precision hyperfine spectroscopy”,” Phys. Rev. A 97(1), 016501 (2018).
[Crossref]

Phys. Rev. Lett. (2)

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171 Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116(6), 063001 (2016).
[Crossref]

Other (7)

A. Kramida, Y. Ralchenko, J. Reader, and N. A. Team, “NIST Atomic Spectra Database (Ver. 5.6) (National Institute of Standards and Technology, Gaithersburg, 2018). http://physics.nist.gov/asd .

Alvasources from Alvatec (now AlfaVakuo e.U.).

Toptica DL100.

Thorlabs PDF10A/M.

HighFinesse WS/7 and WS8-2.

Considering a Maxwell-Boltzmann distribution with most probable speed ${\boldsymbol{\mathcal{v}}}_\textrm {at}=\sqrt {\frac {2k_{\mathrm {B}}T}{M}}$vat=2kBTM, with kB the Boltzmann constant and M the mass of an ytterbium atom.

Using the inverse of the squared uncertainties as weights.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Sketch of the experimental setup. In an ultra-high vacuum chamber, a 399 nm laser beam crosses an atomic beam of neutral ytterbium atoms to excite the ${}^1\textrm {S}_0 \rightarrow {}^1\textrm {P}_1$ transition. The resulting fluorescence is detected by a low-noise photodiode. An angle $\theta$ can be introduced with respect to the perfect orthogonal configuration and a mirror allows for back reflection of the laser beam for alignment purposes (see text for details).
Fig. 2.
Fig. 2. Fluorescence spectrum of ytterbium atoms, where the laser frequency is measured with the WS8-2. Green points: experimental data. Black dashed curve: Lorentzian fit with common FWHM. Frequencies are plotted relatively to the ${}^{174}\rm {Yb}$ isotope line.
Fig. 3.
Fig. 3. Absolute measurements of the ${}^{174}\rm {Yb}$ ${}^1\textrm {S}_0 \rightarrow {}^1\textrm {P}_1$ transition frequency. Blue square: [7]; yellow circle: [8]; green star: [9]; red upward pointing triangle: calculated from [10]; purple diamond: [11]; brown downward pointing triangle: this work with WS/7; light blue square: this work with WS8-2. Frequencies are plotted relatively to the atomic transition in the ${}^{174}\rm {Yb}$ isotope as measured in [7].
Fig. 4.
Fig. 4. Fluorescence spectra of ytterbium atoms as a function of the laser frequency while retro-reflecting the probing beam at different angles: $\theta \sim 1^{\circ }$ (blue), $\theta \sim 3^{\circ }$ (yellow), $\theta \sim 5^{\circ }$ (green), $\theta \sim 7^{\circ }$ (red). Frequencies are plotted relatively to the atomic transition in the ${}^{174}\rm {Yb}$ isotope. Inset: Doppler shift as a function of the angle $\theta$ and associated linear fit indicating the zero-shift angle for perpendicular configuration.

Tables (2)

Tables Icon

Table 1. Absolute measurement of the frequency of the 1 S 0 1 P 1 transition depending on the isotope and the hyperfine transition.

Tables Icon

Table 2. Summary of the conservative estimates on the uncertainties affecting the 1 S 0 1 P 1 transition measurement.

Metrics