Abstract

We applied an imaging optical system and convolution analysis to a one-shot 3D imaging method with a chirped optical frequency comb to greatly improve the transverse spatial resolution and depth accuracy. We obtained the high contrast spectral interference of a diffusive surface using the designed lens system and developed a simple and robust analysis technique using convolution of an obtained the interference fringe. The developed method was demonstrated to realize submicron-level uncertainty for the depth measurement. When applied to the surface structure of a coin, it demonstrated a transverse spatial resolution of 8.98 lp/mm and depth resolution of 0.35 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasonic wave sensing using an optical-frequency-comb sensing cavity for photoacoustic imaging

Takeo Minamikawa, Takashi Masuoka, Takashi Ogura, Kyuki Shibuya, Ryo Oe, Eiji Hase, Yoshiaki Nakajima, Yoshihisa Yamaoka, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, Kaoru Minoshima, and Takeshi Yasui
OSA Continuum 2(2) 439-449 (2019)

Hyperspectral imager for the mid-infrared spectral range using a single-mirror interferometer and a windowing method

Michael H. Köhler, The Thien Nguyen, Patrick Kienle, Xingchen Dong, Michael Schardt, Martin Jakobi, and Alexander W. Koch
OSA Continuum 2(11) 3212-3222 (2019)

Computational-imaging-based optical coherence tomography in time- and frequency-domain

Mengqi Du, Kjeld S. E. Eikema, and Stefan Witte
OSA Continuum 2(11) 3141-3152 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref]
  2. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref]
  3. S.-W. Kim, “Photonics metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  4. G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
    [Crossref]
  5. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref]
  6. K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
    [Crossref]
  7. T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
    [Crossref]
  8. U. Schnell, S. Gray, and R. Dändliker, “Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target,” Opt. Lett. 21(7), 528 (1996).
    [Crossref]
  9. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795 (2000).
    [Crossref]
  10. P. Hlubina, D. Ciprian, J. Lunácek, and M. Lesnák, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14(17), 7678 (2006).
    [Crossref]
  11. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792 (1998).
    [Crossref]
  12. P. Hlubina, “Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer,” J. Mod. Opt. 51(4), 537–547 (2004).
    [Crossref]
  13. A. Hirai and H. Matsumoto, “Measurement of group refractive index wavelength dependence using a low-coherence tandem interferometer,” Appl. Opt. 45(22), 5614 (2006).
    [Crossref]
  14. P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including a stationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
    [Crossref]
  15. Y. Nakajima and K. Minoshima, “Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement,” Opt. Express 23(20), 25979–25987 (2015).
    [Crossref]
  16. H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
    [Crossref]

2017 (1)

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref]

2015 (1)

2013 (1)

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

2012 (1)

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including a stationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[Crossref]

2009 (1)

S.-W. Kim, “Photonics metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

2006 (2)

2004 (2)

P. Hlubina, “Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer,” J. Mod. Opt. 51(4), 537–547 (2004).
[Crossref]

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref]

2002 (1)

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

2000 (2)

1998 (1)

1996 (1)

1994 (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

1992 (1)

Arai, K.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

Belabas, N.

Ciprian, D.

Dändliker, R.

Dorrer, C.

Dresel, T.

Gray, S.

Häusler, G.

Hirai, A.

Hlubina, P.

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including a stationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[Crossref]

P. Hlubina, D. Ciprian, J. Lunácek, and M. Lesnák, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14(17), 7678 (2006).
[Crossref]

P. Hlubina, “Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer,” J. Mod. Opt. 51(4), 537–547 (2004).
[Crossref]

Iaconis, C.

Inaba, H.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

Joffre, M.

Kato, T.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref]

Kim, S.-W.

S.-W. Kim, “Photonics metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Kosai, Y.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

Lesnák, M.

Likforman, J.-P.

Lunácek, J.

Matsumoto, H.

Matsuoka, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

Minoshima, K.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref]

Y. Nakajima and K. Minoshima, “Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement,” Opt. Express 23(20), 25979–25987 (2015).
[Crossref]

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref]

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Nakajima, Y.

Olszewski, J.

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including a stationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[Crossref]

Saito, M.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

Schnell, U.

Suto, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

Takahashi, M.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

Takeyama, N.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

Uchida, M.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref]

Venzke, H.

Walmsley, I. A.

Wu, G.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Ye, J.

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Appl. Opt. (3)

J. Biotechnol. (1)

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[Crossref]

J. Mod. Opt. (1)

P. Hlubina, “Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer,” J. Mod. Opt. 51(4), 537–547 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Nat. Photonics (1)

S.-W. Kim, “Photonics metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Opt. Commun. (1)

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including a stationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Sci. Rep. (2)

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref]

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. One-shot 3D imaging method using chirped OFCs.
Fig. 2.
Fig. 2. (a) Experimental configuration (PC: polarization controller, ND: neutral density filter, BS: beam splitter, CL: cylindrical lens). (b) Properties of the OFC: (1) spectrum and (2) pulse waveform of the reference and the probe pulses. (c) Interference fringe analysis method: (1) measured spectral image and (2) convolution of spectral interference between the black dashed line of the left image.
Fig. 3.
Fig. 3. (a) Spectral image at the delay position of 600 µm (the sample is a plane mirror). (b) Change to the convolution signal with changing delay at 150 pixels (white dashed line in (a)). (c) Peak position of the detected convolution signal (yellow cross). The calibration curve was approximated with a second-order polynomial from the measured peak position (red line).
Fig. 4.
Fig. 4. (a) Imaging spectrometer using diffraction grating and 3D measurement by line scanning. (b) Surface shape of the measured Japanese coin: (1) overview of the structure and (2) fine structure. The coin clearly has a step height of about 45 µm.
Fig. 5.
Fig. 5. (a) Focal image at the front slit of imaging spectrometer: (a-1) element 3 and (a-2) element 4 of group 1 (1951 USAF). The green area indicates the gap of the chart. (b, c) Intensity map of the interference image of the test chart (elements of groups 1 and 3 and element 1 of group 2 are shown) obtained with the developed method with a line scan. (d) Enlarged images and 2D profiles of the intensity maps at 2.52 and 2.83 lp/mm, which are same targets of (a-1) and (a-2) (shown in (d-1) and (d-2), respectively). The 2D profiles were obtained from the map on the Y axis and show that the structure at the edge of the chart was deformed by the experimental configuration. (e) MTF plot of the focal image and intensity map obtained by the test chart. The MTF plots of the map on the X and Y axes are shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ( n ) = m f ( m ) f ( n m )
C = I M a x I M i n I M a x + I M i n

Metrics