Abstract

Anti-reflection (AR) coatings aiming at the reduction of Fresnel reflection losses has come into demand in the terahertz (THz) region. Implementation of such a coating in practice is a difficult task, partially because the broad spectrum of the THz signal is difficult to control. Here, we propose and demonstrate a moth-eye AR structure capable of suppressing reflection losses in the range of 0.3 to 2.5 THz for high-resistivity silicon, resulting in a maximum transmission of 91%. The structure comprises of pyramid-like structures with a height of about 100 μm created on the material surface by femtosecond laser processing. We demonstrate experimentally and theoretically that such micromachining considerably increases transmittance of the silicon in the spectral range of 0.3–2.5 THz. We also demonstrate experimentally that such a structure allows one to improve performance of the THz source based on the LiNbO3 crystal.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-laser-fabricated periodic tapered structures on a silicon substrate for terahertz antireflection

Xi Yu, Michiharu Ohta, Nobuhito Takizawa, Kazuhisa Mikame, Shingo Ono, and Jongsuck Bae
Appl. Opt. 58(35) 9595-9602 (2019)

Broadband antireflection film with moth-eye-like structure for flexible display applications

Guanjun Tan, Jiun-Haw Lee, Yi-Hsin Lan, Mao-Kuo Wei, Lung-Han Peng, I-Chun Cheng, and Shin-Tson Wu
Optica 4(7) 678-683 (2017)

Combined ‘moth-eye’ structured and graded index-layer anti-reflecting coating for high index glasses

Matthias Kraus, Zhaolu Diao, Klaus Weishaupt, Joachim P. Spatz, Kerstin Täschner, Hagen Bartzsch, Ralph Schmittgens, and Robert Brunner
Opt. Express 27(24) 34655-34664 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
    [Crossref]
  2. C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE Trans. Terahertz Sci. Technol. 1(1), 232–240 (2011).
    [Crossref]
  3. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  4. R. Datta, C. D. Munson, M. D. Niemack, J. J. McMahon, J. Britton, E. J. Wollack, J. Beall, M. J. Devlin, J. Fowler, P. Gallardo, J. Hubmayr, K. Irwin, L. Newburgh, J. P. Nibarger, L. Page, M. A. Quijada, B. L. Schmitt, S. T. Staggs, R. Thornton, and L. Zhang, “Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths,” Appl. Opt. 52(36), 8747–8758 (2013).
    [Crossref]
  5. K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
    [Crossref]
  6. Y. W. Chen and X. C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7(2), 243–262 (2014).
    [Crossref]
  7. S. Wilson and M. Hutley, “The Optical Properties of ’Moth Eye’ Antireflection Surfaces,” Opt. Acta 29(7), 993–1009 (1982).
    [Crossref]
  8. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  9. A. Brahm, S. Döring, A. Wilms, G. Notni, S. Nolte, and A. Tünnermann, “Laser-generated broadband antireflection structures for freeform silicon lenses at terahertz frequencies,” Appl. Opt. 53(13), 2886 (2014).
    [Crossref]
  10. T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
    [Crossref]
  11. K. Sugioka and Y. Cheng, “Ultrafast lasers–reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  12. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  13. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990).
    [Crossref]
  14. K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences (Springer, 2013).
  15. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
    [Crossref]
  16. Q. Wu and X. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
    [Crossref]
  17. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [Crossref]
  18. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068 (1995).
    [Crossref]
  19. J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
    [Crossref]
  20. A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
    [Crossref]
  21. J. Hebling, K. Yeh, M. Hoffmann, B. Bartal, and K. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
    [Crossref]
  22. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
    [Crossref]

2017 (1)

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

2016 (4)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

2014 (3)

K. Sugioka and Y. Cheng, “Ultrafast lasers–reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

A. Brahm, S. Döring, A. Wilms, G. Notni, S. Nolte, and A. Tünnermann, “Laser-generated broadband antireflection structures for freeform silicon lenses at terahertz frequencies,” Appl. Opt. 53(13), 2886 (2014).
[Crossref]

Y. W. Chen and X. C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7(2), 243–262 (2014).
[Crossref]

2013 (1)

2011 (1)

C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE Trans. Terahertz Sci. Technol. 1(1), 232–240 (2011).
[Crossref]

2008 (1)

2006 (1)

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

2004 (1)

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

2002 (1)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

2000 (1)

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

1995 (2)

1990 (1)

1982 (1)

S. Wilson and M. Hutley, “The Optical Properties of ’Moth Eye’ Antireflection Surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Bartal, B.

Beall, J.

Beigang, R.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Bonse, J.

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Brahm, A.

Britton, J.

Brzezinka, K.-W.

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Chai, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Chen, Y. W.

Y. W. Chen and X. C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7(2), 243–262 (2014).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers–reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Datta, R.

Devlin, M. J.

Döring, S.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Fattinger, C.

Férachou, D.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Fowler, J.

Gallardo, P.

Gatesman, A.

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

Gaylord, T. K.

Grann, E. B.

Grischkowsky, D.

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Hafez, H. A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Hanany, S.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hazumi, M.

Hebling, J.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Hoffmann, M.

Hubmayr, J.

Hutley, M.

S. Wilson and M. Hutley, “The Optical Properties of ’Moth Eye’ Antireflection Surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Ibrahim, A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Imada, H.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

Inoue, Y.

Irwin, K.

Ishino, H.

Ji, M.

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kawase, K.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Keiding, S.

Koch, J.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Kulesa, C.

C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE Trans. Terahertz Sci. Technol. 1(1), 232–240 (2011).
[Crossref]

Kuwata-Gonokami, M.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences (Springer, 2013).

Lee, Y. S.

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Maki, K.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Matsumura, T.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

McMahon, J. J.

Meixner, A.

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Moharam, M. G.

Mondal, S.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Munson, C. D.

Musante, C.

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Nelson, K.

Newburgh, L.

Nibarger, J. P.

Niemack, M. D.

Nolte, S.

Notni, G.

Otani, C.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Ozaki, T.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Page, L.

Peiponen, K.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences (Springer, 2013).

Pommet, D. A.

Quijada, M. A.

Rau, C.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Ropagnol, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Schmitt, B. L.

Schütz, V.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

Staggs, S. T.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers–reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Suttman, O.

Suttmann, O.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Theuer, M.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Thornton, R.

Torosyan, G.

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Tünnermann, A.

van Exter, M.

Waldman, J.

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Wen, Q.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

Wilms, A.

Wilson, S.

S. Wilson and M. Hutley, “The Optical Properties of ’Moth Eye’ Antireflection Surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Wollack, E. J.

Wu, Q.

Q. Wu and X. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[Crossref]

Yagvesson, S.

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

Yeh, K.

Young, K.

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, “Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures,” Appl. Opt. 55(13), 3502 (2016).
[Crossref]

Zeitler, A.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences (Springer, 2013).

Zhang, L.

Zhang, X.

Q. Wu and X. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[Crossref]

Zhang, X. C.

Y. W. Chen and X. C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7(2), 243–262 (2014).
[Crossref]

Zhang, X.-C.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

Q. Wu and X. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, “Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler,” Appl. Phys. Lett. 88(7), 071122 (2006).
[Crossref]

Appl. Surf. Sci. (1)

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Front. Optoelectron. (1)

Y. W. Chen and X. C. Zhang, “Anti-reflection implementations for terahertz waves,” Front. Optoelectron. 7(2), 243–262 (2014).
[Crossref]

IEEE Microw. Guid. Wave Lett. (1)

A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett. 10(7), 264–266 (2000).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE Trans. Terahertz Sci. Technol. 1(1), 232–240 (2011).
[Crossref]

J. Appl. Phys. (2)

K. Young, Q. Wen, S. Hanany, H. Imada, J. Koch, T. Matsumura, O. Suttmann, and V. Schütz, “Broadband millimeter-wave anti-reflection coatings on silicon using pyramidal sub-wavelength structures,” J. Appl. Phys. 121(21), 213103 (2017).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

J. Opt. (1)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Light: Sci. Appl. (2)

K. Sugioka and Y. Cheng, “Ultrafast lasers–reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Nat. Photonics (1)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Opt. Acta (1)

S. Wilson and M. Hutley, “The Optical Properties of ’Moth Eye’ Antireflection Surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Other (2)

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Overview of the fabrication process. Moth-eye structures are fabricated by linearly scanning the sample in a microscopic grid pattern against a focused laser.
Fig. 2.
Fig. 2. (a) A photograph of the fabricated moth-eye structured plate and (b) its 3-D profile image, taken by laser scanning microscope. (c) A representative line profile.
Fig. 3.
Fig. 3. THz-TDS measurements of the double-side moth-eye structured silicon plate in (a) time and (b) frequency domain compared with a bare silicon plate.
Fig. 4.
Fig. 4. Using the model shown in (a), the calculated transmissivity (b) is shown. The decrease in transmissivity in the higher frequency was well reproduced with the inclusion of an imaginary term $n_i=0.032$ to the silicon refractive index for the material in the moth-eye portion (red, solid) compared to when only the morphology was considered (blue, dashed).
Fig. 5.
Fig. 5. (a) THz output coupled LN schematic. THz-TDS measurements of generated THz light in the (b) time and (c) frequency domains compared with the bare LN crystal.

Metrics