Abstract

A negative axicon micro-cavity polydimethylsiloxane (PDMS) filled Fabry-Perot interferometer (FPI) based sensor for accurate temperature sensing is proposed and demonstrated. The micro-cavity lengths of 130 µm, 160 µm, 240 µm and 260 µm are employed for temperature sensing from 27 °C to 80 °C. The sensing probe responses were measured in terms of wavelength shift resulting from the thermo-induced change in the FP cavity length and in the refractive index of the PDMS filled in the cavity. However, the effect of thermal expansion/contraction of PDMS is found to be more dominating over the change in its refractive index. The highest and least sensitivity of the order of 59 pm/ °C and 24 pm/ °C are observed for 130 µm and 260 µm cavity lengths. The linear relationship between the change in spatial frequency and cavity length with respect to temperature variation are also studied. These miniaturized and stable sensor probes are capable of measuring small change in temperature variation with high accuracy and sensitivity and can be used for remote sensing measurements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Kaushal Vairagi, Dattatray Late, Sudipta Sarkar, Ravindra K. Sinha, and Samir Mondal
Opt. Express 27(5) 7277-7290 (2019)

Temperature sensor based on liquid-filled negative curvature optical fibers

Chengli Wei, Joshua T. Young, Curtis R. Menyuk, and Jonathan Hu
OSA Continuum 2(7) 2123-2130 (2019)

Highly sensitive PDMS-filled Fabry–Perot interferometer temperature sensor based on the Vernier effect

Leyi Hou, Chunliu Zhao, Ben Xu, Bangning Mao, Changyu Shen, and D. N. Wang
Appl. Opt. 58(18) 4858-4865 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  2. P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
    [Crossref]
  3. J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
    [Crossref]
  4. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref]
  5. X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  6. O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
    [Crossref]
  7. L. Alwis, T. Sun, and K. T. V. Grattan, “Optical Fibre Refractive Index Sensor in a Hybrid Fibre Grating Configuration,” Procedia Eng. 120, 11–14 (2015).
    [Crossref]
  8. B. Dong, J. Hao, C.-y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 47(10), 1668–1672 (2008).
    [Crossref]
  9. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref]
  10. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref]
  11. A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
    [Crossref]
  12. J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
    [Crossref]
  13. C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
    [Crossref]
  14. U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
    [Crossref]
  15. I. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly Sensitive Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Simultaneous Measurement of Refractive Index and Temperature,” J. Lightwave Technol. 29(9), 1367–1374 (2011).
    [Crossref]
  16. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [Crossref]
  17. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref]
  18. K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
    [Crossref]
  19. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref]
  20. C. He, J. Fang, Y. Zhang, Y. Yang, J. Yu, J. Zhang, H. Guan, W. Qiu, P. Wu, J. Dong, H. Lu, J. Tang, W. Zhu, N. Arsad, Y. Xiao, and Z. Chen, “High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane,” Opt. Express 26(8), 9686–9699 (2018).
    [Crossref]
  21. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
    [Crossref]
  22. Y. Chen, F. Xu, and Y.-Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
    [Crossref]
  23. S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
    [Crossref]
  24. M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Perot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
    [Crossref]
  25. J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
    [Crossref]
  26. N. Irawati, S. W. Harun, H. A. Rahman, S. S. Chong, N. A. Hamizi, and H. Ahmad, “Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber,” Appl. Opt. 56(16), 4675–4679 (2017).
    [Crossref]
  27. C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
    [Crossref]
  28. G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
    [Crossref]
  29. Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
    [Crossref]
  30. H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
    [Crossref]
  31. C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
    [Crossref]

2018 (4)

O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
[Crossref]

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

C. He, J. Fang, Y. Zhang, Y. Yang, J. Yu, J. Zhang, H. Guan, W. Qiu, P. Wu, J. Dong, H. Lu, J. Tang, W. Zhu, N. Arsad, Y. Xiao, and Z. Chen, “High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane,” Opt. Express 26(8), 9686–9699 (2018).
[Crossref]

2017 (6)

J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
[Crossref]

N. Irawati, S. W. Harun, H. A. Rahman, S. S. Chong, N. A. Hamizi, and H. Ahmad, “Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber,” Appl. Opt. 56(16), 4675–4679 (2017).
[Crossref]

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
[Crossref]

2016 (4)

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Perot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
[Crossref]

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

2015 (5)

2014 (2)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

2012 (2)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (3)

Aellen, T.

Ahmad, H.

Albri, F.

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Alwis, L.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical Fibre Refractive Index Sensor in a Hybrid Fibre Grating Configuration,” Procedia Eng. 120, 11–14 (2015).
[Crossref]

Arrizabalaga, O.

O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
[Crossref]

Arsad, N.

Carter, R. M.

Chan, C. C.

P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, X.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Chen, Y.

Chen, Z.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Chong, S. S.

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Cruz-Garcia, M. A.

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Deng, Y. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Dong, B.

Dong, J.

Dong, X.

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Durana, G.

O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
[Crossref]

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Fang, J.

Fick, J.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Geng, Y. F.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Grattan, K. T. V.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical Fibre Refractive Index Sensor in a Hybrid Fibre Grating Configuration,” Procedia Eng. 120, 11–14 (2015).
[Crossref]

Guan, H.

Hamizi, N. A.

Han, M.

Hand, D. P.

J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
[Crossref]

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Hao, J.

Harun, S. W.

Havermann, D.

He, C.

He, J.

He, S.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Hernández-Romano, I.

Hervas, J.

Hou, W.

Howe, R. T.

Hu, M.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Irawati, N.

Ji, C.

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Jia, W.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Jiang, D. S.

Jiang, X.

Jin, S.

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Jung, I.

Kakarantzas, G.

Kang, J.

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Kaur, S.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Keppner, H.

Kim, D.

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

Kim, H.

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

Kumbhakar, D.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Le Floch, S.

Lee, B. H.

Li, C.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Li, J.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Li, X. J.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Li, Z.

Lian, Z.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Liao, C.

Liao, X.

Liaw, C.-y.

Lin, B.

Lin, H.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Liu, D.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Liu, G.

Liu, S.

Liu, W. J.

Liu, Y.

Llera, M.

López-Figueroa, E. O.

Lu, H.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Lu, Y.-Q.

Luo, H.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Ma, J.

MacPherson, W. N.

J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
[Crossref]

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Maier, R. R. J.

J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
[Crossref]

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Markos, C.

Martín, J. C.

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Mathew, J.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Miliar, M. M.

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Minz, R. A.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Mondal, S. K.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Monzón-Hernández, D.

Moreno-Hernández, C.

Mudhana, G.

Ning, T.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Paek, U.-C.

Paredes-Gallardo, O. E.

Park, B.

Park, K. S.

Park, S. J.

Paul, S.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Pei, L.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Polyzos, D.

Provine, J.

Qiu, W.

Qu, J.

Rahman, H. A.

Ran, Z. L.

Rao, Y. J.

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Salvadé, Y.

Sampath, U.

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

Schneller, O.

Senn, P.

Sinha, R. K.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

So, P. L.

P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
[Crossref]

Solgaard, O.

Song, M.

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Sun, B.

Sun, H.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Sun, J. N.

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Sun, Q.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Sun, T.

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical Fibre Refractive Index Sensor in a Hybrid Fibre Grating Configuration,” Procedia Eng. 120, 11–14 (2015).
[Crossref]

Sun, X.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Tan, X. L.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Tang, J.

Tiwari, U.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Tjin, S. C.

Torres-Cisneros, M.

Vairagi, K.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Villalba, A.

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Villatoro, J.

Vlachos, K.

Wang, C.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

Wang, Y.

Wen, X.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Wu, P.

Wu, S.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Xiao, Y.

Xu, F.

Xu, Z.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Yan, G.

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Yang, S.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Yang, Y.

Yang, Z.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Yin, G.

Yin, Z.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Yu, H. H.

Yu, J.

Yuan, L.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Zhang, C.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Zhang, J.

Zhang, L.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Zhang, X.

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Zhang, Y.

Zhao, C.-L.

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Zhou, B.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Zhou, J.

Zhu, W.

Zu, P.

P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
[Crossref]

Zubia, J.

O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
[Crossref]

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Zu, P. L. So, and C. C. Chan, “An Ultrahigh Sensitivity Point Temperature Sensor Based on Fiber Loop Mirror,” IEEE J. Sel. Top. Quantum Electron. 23(2), 274–277 (2017).
[Crossref]

IEEE Photonics J. (1)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-Curable Polymer Microhemisphere-Based Fiber-Optic Fabry–Perot Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-Assisted Microfiber for Optical-Power-Based Temperature Sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

IEEE Sens. J. (1)

U. Sampath, D. Kim, H. Kim, and M. Song, “Cryogenic Temperature Sensor Based on Fresnel Reflection From a Polymer-Coated Facet of Optical Fiber,” IEEE Sens. J. 18(9), 3640–3644 (2018).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

J. Li, F. Albri, J. N. Sun, M. M. Miliar, R. R. J. Maier, D. P. Hand, and W. N. MacPherson, “Fabricating optical fibre-top cantilevers for temperature sensing,” Meas. Sci. Technol. 25(3), 035206 (2014).
[Crossref]

Opt. Commun. (1)

H. Sun, S. Yang, X. Zhang, L. Yuan, Z. Yang, and M. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Opt. Express (10)

G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
[Crossref]

H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[Crossref]

C. He, J. Fang, Y. Zhang, Y. Yang, J. Yu, J. Zhang, H. Guan, W. Qiu, P. Wu, J. Dong, H. Lu, J. Tang, W. Zhu, N. Arsad, Y. Xiao, and Z. Chen, “High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane,” Opt. Express 26(8), 9686–9699 (2018).
[Crossref]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
[Crossref]

Y. Chen, F. Xu, and Y.-Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
[Crossref]

M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Perot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
[Crossref]

J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref]

Opt. Fiber Technol. (1)

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Opt. Laser Technol. (1)

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Opt. Lett. (1)

Procedia Eng. (1)

L. Alwis, T. Sun, and K. T. V. Grattan, “Optical Fibre Refractive Index Sensor in a Hybrid Fibre Grating Configuration,” Procedia Eng. 120, 11–14 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

C. Ji, C.-L. Zhao, J. Kang, X. Dong, and S. Jin, “Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating,” Rev. Sci. Instrum. 83(5), 053109 (2012).
[Crossref]

Sens. Actuators, B (3)

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

C. Wang, G. Yan, Z. Lian, X. Chen, S. Wu, and S. He, “Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing,” Sens. Actuators, B 255, 1937–1944 (2018).
[Crossref]

O. Arrizabalaga, G. Durana, J. Zubia, and J. Villatoro, “Accurate microthermometer based on off center polymer caps onto optical fiber tips,” Sens. Actuators, B 272, 612–617 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of negative axicon micro-cavity fabrication (a) etching (inset shows the fabricated probe) and (b) PDMS filing (inset shows the micro-graph of fabricated sensor probe).
Fig. 2.
Fig. 2. Schematic diagram of an experimental set up of FPI-based PDMS filled micro-cavity for temperature sensing. Inset shows micrographs of micro-cavity lengths of i) 130 µm, ii) 160 µm, iii) 240 µm and iv) 260 µm respectively.
Fig. 3.
Fig. 3. The spectral response and its spatial frequency spectrum obtained by taking the FFT for each PDMS filled micro-cavity FPI with temperature variation from 27 °C to 80 °C for each cavity length of (a, b) for 130 µm, (c, d) for 160 µm, (e, f) for 240 µm and (g, h) for 260 µm respectively.
Fig. 4.
Fig. 4. Relationship between dip wavelength shift Vs temperature in heating and cooling mode for micro-cavity lengths of a) 130 µm, b) 160 µm, c) 240 µm and d) 260 µm respectively within temperature range of 27 °C to 80 °C.
Fig. 5.
Fig. 5. (a) Refractive index variation of PDMS with change in temperature, (b) Change in length of micro-cavity for 130 µm, 160 µm, 240 µm and 260 µm in temperature variation from 27 °C to 80 °C.
Fig. 6.
Fig. 6. The spatial frequency shifts Vs change in temperature from 27 °C to 80 °C for cavity lengths of 130 µm, 160 µm, 240 µm and 260 µm respectively.

Tables (1)

Tables Icon

Table 1. The sensing performance of various developed fiber optic sensors with temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

l O P L = 2 n L
Δ l O P L = 2 ( n d L d T + L d n d T ) Δ T = l O P L ( α + β ) Δ T
Δ λ d i p = 2 n Δ L m = Δ L λ d i p L
Δ λ = λ d n d T n Δ T = γ T Δ T
Δ ξ = 1 λ 2 Δ l O P L

Metrics