Abstract

Color rendition and energy efficiency have long been considered characteristics of light sources that cannot be maximized simultaneously. The tradeoff has been studied extensively, but usually considering only average color fidelity. This work examines the color rendition versus energy efficiency tradeoff in the context of ANSI/IES TM-30-18, Method for Evaluating Light Source Color Rendition, which provides numerous measures beyond average color fidelity. The analysis demonstrates that color rendition criteria based on combinations of ANSI/IES TM-30-18 values can be used to improve color quality with less of an effect on luminous efficacy of radiation than increasing CIE Ra alone.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of circadian white light-emitting diodes with tunable color temperature and nearly perfect color rendition

Peifen Zhu, Hongyang Zhu, Gopi C. Adhikari, and Saroj Thapa
OSA Continuum 2(8) 2413-2427 (2019)

Development of the IES method for evaluating the color rendition of light sources

Aurelien David, Paul T. Fini, Kevin W. Houser, Yoshi Ohno, Michael P. Royer, Kevin A. G. Smet, Minchen Wei, and Lorne Whitehead
Opt. Express 23(12) 15888-15906 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Nickerson, “Light Sources and Color Rendering,” J. Opt. Soc. Am. 50(1), 57–69 (1960).
    [Crossref]
  2. DOE, “Solid-State Lighting 2017 Suggested Research Topics Supplement,” (2017).
  3. CIE, “13.3: Method of measuring and specifying colour rendering properties of light sources,” 3rd Ed., (Commission Internationale de l’Eclairage, 1995), p. 16.
  4. CEC, “Building Energy Standard Title 24, Part 6, Appendix JA8, Qualification Requirements for High Efficacy Light Sources,” (2016).
  5. F. Zhang, H. Xu, and Z. Wang, “Optimizing spectral compositions of multichannel LED light sources by IES color fidelity index and luminous efficacy of radiation,” Appl. Opt. 56(7), 1962–1971 (2017).
    [Crossref]
  6. W. L. Zhang, W. Yang, P. Zhong, S. L. Mei, G. L. Zhang, G. P. Chen, G. X. He, and R. Q. Guo, “Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition,” Opt. Mater. Express 7(9), 3065–3076 (2017).
    [Crossref]
  7. P. Zhong, G. X. He, and M. H. Zhang, “Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED,” Opt. Express 20(S5), A684–A693 (2012).
    [Crossref]
  8. P. Zhong, G. X. He, and M. H. Zhang, “Optimal spectra of white light-emitting diodes using quantum dot nanophosphors,” Opt. Express 20(8), 9122–9134 (2012).
    [Crossref]
  9. Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
    [Crossref]
  10. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
    [Crossref]
  11. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [Crossref]
  12. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref]
  13. J. B. Protzman and K. W. Houser, “LEDs for general illumination: The state of the science,” Leukos 3, 121–142 (2006).
  14. G. X. He and H. F. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19(3), 2519–2529 (2011).
    [Crossref]
  15. G. X. He and J. Tang, “Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy,” Opt. Lett. 39(19), 5570–5573 (2014).
    [Crossref]
  16. G. X. He and J. Tang, “Spectral Optimization of Phosphor-Coated White LEDs for Color Rendering and Luminous Efficacy,” IEEE Photon. Technol. Lett. 26(14), 1450–1453 (2014).
    [Crossref]
  17. K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
    [Crossref]
  18. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref]
  19. A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng. 51(4), 044003 (2012).
    [Crossref]
  20. P.-C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9(6), 405–412 (2013).
    [Crossref]
  21. C. van Trigt, “Color rendering, a reassessment,” Color Res. Appl. 24(3), 197–206 (1999).
    [Crossref]
  22. K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
    [Crossref]
  23. CIE, “224:2017 CIE 2017 Colour Fidelity Index for accurate scientific use,” (Commision Internationale de L'Eclairage, 2017).
  24. M. P. Royer, “Comparing Measures of Average Color Fidelity,” Leukos 14(2), 69–85 (2018).
    [Crossref]
  25. IES, “IES-TM-30-18 Method for Evaluating Light Source Color Rendition,” (The Illuminating Engineering Society of North America, 2018), p. 34.
  26. M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
    [Crossref]
  27. M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
    [Crossref]
  28. T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Light. Res. Technol. 51(3), 331–352 (2018).
    [Crossref]
  29. F. Zhang, H. Xu, and H. Feng, “Toward a unified model for predicting color quality of light sources,” Appl. Opt. 56(29), 8186–8195 (2017).
    [Crossref]
  30. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
    [Crossref]
  31. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
    [Crossref]
  32. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [Crossref]
  33. M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
    [Crossref]
  34. M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
    [Crossref]
  35. M. S. Rea and J. P. Freyssinier, “Color Rendering: Beyond Pride and Prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
    [Crossref]
  36. A. J. Elliot and M. A. Maier, “Color psychology: effects of perceiving color on psychological functioning in humans,” Annu. Rev. Psychol. 65(1), 95–120 (2014).
    [Crossref]
  37. M. C. Wei and K. W. Houser, “Systematic Changes in Gamut Size Affect Color Preference,” Leukos 13(1), 23–32 (2017).
    [Crossref]
  38. M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.
  39. M. Wei, W. Bao, and H. Huang, “Consideration of Light Level in Specifying Light Source Color Rendition,” Leukos, Online Before Print. DOI: 10.1080/15502724.2018.1448992 (2018).
    [Crossref]
  40. Y. Kawashima, Y. Ohno, and S. Oh, “Vision Experiment on Verification of Hunt Effect for Lighting,” in 11th Biennial Joint CIE/USNC and CNC/CIE Technical Conference, 2017).
  41. S. Soltic and A. Chalmers, “Prospects for 4-laser white-light sources,” J. Mod. Opt. 66(3), 271–280 (2018).
    [Crossref]
  42. L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).
  43. J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
    [Crossref]
  44. M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
    [Crossref]
  45. M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
    [Crossref]
  46. M. Royer, Analysis of Color Rendition Specification Criteria, SPIE OPTO (SPIE, 2019), Vol. 10940.
  47. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
    [Crossref]
  48. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
    [Crossref]
  49. A. Zukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
    [Crossref]
  50. NEMA, “ANSI/NEMA C78.377-2017 American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting Products,” (National Electral Manufacturers Association, 2017), p. 48.
  51. A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
    [Crossref]
  52. M. Royer, “Spectral power distributions,” figshare, DOI: 10.6084/m9.figshare.7704566.v1 (2019).
  53. M. Royer, “Color Rendition Characteristics,” figshare, DOI: 10.6084/m9.figshare.7704521.v1 (2019).
  54. IES, “IES TM-30-18 Advanced Calculator Tool v2.00,” (Illuminating Engineering Society of North America, 2018).
  55. M. Royer, “Custom Color Rendition Calculator (1.04),” figshare, DOI: 10.6084/m9.figshare.7704605.v1 (2019).
  56. M. Royer, “LER versus color rendition by ANSI/IES TM-30-18 hue angle bin,” figshare, DOI: 10.6084/m9.figshare.7704620.v1 (2019).

2018 (5)

M. P. Royer, “Comparing Measures of Average Color Fidelity,” Leukos 14(2), 69–85 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
[Crossref]

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Light. Res. Technol. 51(3), 331–352 (2018).
[Crossref]

M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
[Crossref]

S. Soltic and A. Chalmers, “Prospects for 4-laser white-light sources,” J. Mod. Opt. 66(3), 271–280 (2018).
[Crossref]

2017 (6)

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

M. C. Wei and K. W. Houser, “Systematic Changes in Gamut Size Affect Color Preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

F. Zhang, H. Xu, and H. Feng, “Toward a unified model for predicting color quality of light sources,” Appl. Opt. 56(29), 8186–8195 (2017).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

F. Zhang, H. Xu, and Z. Wang, “Optimizing spectral compositions of multichannel LED light sources by IES color fidelity index and luminous efficacy of radiation,” Appl. Opt. 56(7), 1962–1971 (2017).
[Crossref]

W. L. Zhang, W. Yang, P. Zhong, S. L. Mei, G. L. Zhang, G. P. Chen, G. X. He, and R. Q. Guo, “Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition,” Opt. Mater. Express 7(9), 3065–3076 (2017).
[Crossref]

2016 (2)

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
[Crossref]

2015 (2)

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

2014 (4)

G. X. He and J. Tang, “Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy,” Opt. Lett. 39(19), 5570–5573 (2014).
[Crossref]

G. X. He and J. Tang, “Spectral Optimization of Phosphor-Coated White LEDs for Color Rendering and Luminous Efficacy,” IEEE Photon. Technol. Lett. 26(14), 1450–1453 (2014).
[Crossref]

A. J. Elliot and M. A. Maier, “Color psychology: effects of perceiving color on psychological functioning in humans,” Annu. Rev. Psychol. 65(1), 95–120 (2014).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

2013 (1)

P.-C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9(6), 405–412 (2013).
[Crossref]

2012 (4)

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng. 51(4), 044003 (2012).
[Crossref]

P. Zhong, G. X. He, and M. H. Zhang, “Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED,” Opt. Express 20(S5), A684–A693 (2012).
[Crossref]

P. Zhong, G. X. He, and M. H. Zhang, “Optimal spectra of white light-emitting diodes using quantum dot nanophosphors,” Opt. Express 20(8), 9122–9134 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

2011 (4)

2010 (2)

A. Zukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[Crossref]

M. S. Rea and J. P. Freyssinier, “Color Rendering: Beyond Pride and Prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[Crossref]

2008 (2)

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

2006 (1)

J. B. Protzman and K. W. Houser, “LEDs for general illumination: The state of the science,” Leukos 3, 121–142 (2006).

2005 (2)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

2002 (1)

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

1999 (1)

C. van Trigt, “Color rendering, a reassessment,” Color Res. Appl. 24(3), 197–206 (1999).
[Crossref]

1960 (1)

Allen, G. R.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Bao, W.

M. Wei, W. Bao, and H. Huang, “Consideration of Light Level in Specifying Light Source Color Rendition,” Leukos, Online Before Print. DOI: 10.1080/15502724.2018.1448992 (2018).
[Crossref]

Beers, W. W.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Boyce, P.

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

Bulashevich, K. A.

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
[Crossref]

Calwell, C.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Chalmers, A.

S. Soltic and A. Chalmers, “Prospects for 4-laser white-light sources,” J. Mod. Opt. 66(3), 271–280 (2018).
[Crossref]

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng. 51(4), 044003 (2012).
[Crossref]

Chen, G. P.

Cui, Z.

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

Dai, Q.

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

David, A.

M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

Davis, R.

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

Deconinck, G.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Elliot, A. J.

A. J. Elliot and M. A. Maier, “Color psychology: effects of perceiving color on psychological functioning in humans,” Annu. Rev. Psychol. 65(1), 95–120 (2014).
[Crossref]

Esposito, T.

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Light. Res. Technol. 51(3), 331–352 (2018).
[Crossref]

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

Feng, H.

Fini, P. T.

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “Color Rendering: Beyond Pride and Prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[Crossref]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Gaska, R.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

Gilbride, T. L.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Guo, R. Q.

Hanselaer, P.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Hao, L. X.

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

He, G. X.

Houser, K.

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Light. Res. Technol. 51(3), 331–352 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

Houser, K. W.

M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
[Crossref]

M. C. Wei and K. W. Houser, “Systematic Changes in Gamut Size Affect Color Preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

J. B. Protzman and K. W. Houser, “LEDs for general illumination: The state of the science,” Leukos 3, 121–142 (2006).

Huang, H.

M. Wei, W. Bao, and H. Huang, “Consideration of Light Level in Specifying Light Source Color Rendition,” Leukos, Online Before Print. DOI: 10.1080/15502724.2018.1448992 (2018).
[Crossref]

Hung, P.-C.

P.-C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9(6), 405–412 (2013).
[Crossref]

Ivanauskas, F.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

Jones, C.

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

Karpov, S. Y.

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
[Crossref]

Kawashima, Y.

Y. Kawashima, Y. Ohno, and S. Oh, “Vision Experiment on Verification of Hunt Effect for Lighting,” in 11th Biennial Joint CIE/USNC and CNC/CIE Technical Conference, 2017).

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Krames, M.

M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.

Krames, M. R.

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

Kulik, A. V.

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
[Crossref]

Ledbetter, M. R.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Lin, Y.

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

Maier, M. A.

A. J. Elliot and M. A. Maier, “Color psychology: effects of perceiving color on psychological functioning in humans,” Annu. Rev. Psychol. 65(1), 95–120 (2014).
[Crossref]

Mei, S. L.

Newsham, G.

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

Nickerson, D.

Oh, S.

Y. Kawashima, Y. Ohno, and S. Oh, “Vision Experiment on Verification of Hunt Effect for Lighting,” in 11th Biennial Joint CIE/USNC and CNC/CIE Technical Conference, 2017).

Ohno, Y.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Y. Kawashima, Y. Ohno, and S. Oh, “Vision Experiment on Verification of Hunt Effect for Lighting,” in 11th Biennial Joint CIE/USNC and CNC/CIE Technical Conference, 2017).

Pointer, M. R.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Protzman, J. B.

J. B. Protzman and K. W. Houser, “LEDs for general illumination: The state of the science,” Leukos 3, 121–142 (2006).

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “Color Rendering: Beyond Pride and Prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[Crossref]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Royer, M.

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

M. Royer, Analysis of Color Rendition Specification Criteria, SPIE OPTO (SPIE, 2019), Vol. 10940.

M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
[Crossref]

M. Royer, “Spectral power distributions,” figshare, DOI: 10.6084/m9.figshare.7704566.v1 (2019).

M. Royer, “Color Rendition Characteristics,” figshare, DOI: 10.6084/m9.figshare.7704521.v1 (2019).

M. Royer, “Custom Color Rendition Calculator (1.04),” figshare, DOI: 10.6084/m9.figshare.7704605.v1 (2019).

M. Royer, “LER versus color rendition by ANSI/IES TM-30-18 hue angle bin,” figshare, DOI: 10.6084/m9.figshare.7704620.v1 (2019).

Royer, M. P.

M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
[Crossref]

M. P. Royer, “Comparing Measures of Average Color Fidelity,” Leukos 14(2), 69–85 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

Ryckaert, W. R.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Safranak, S.

M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
[Crossref]

Sandahl, L. J.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Shur, M.

Shur, M. S.

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

Smet, K.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

Smet, K. A.

Smet, K. A. G.

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
[Crossref]

Soltic, S.

S. Soltic and A. Chalmers, “Prospects for 4-laser white-light sources,” J. Mod. Opt. 66(3), 271–280 (2018).
[Crossref]

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng. 51(4), 044003 (2012).
[Crossref]

Steward, H.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Tang, J.

G. X. He and J. Tang, “Spectral Optimization of Phosphor-Coated White LEDs for Color Rendering and Luminous Efficacy,” IEEE Photon. Technol. Lett. 26(14), 1450–1453 (2014).
[Crossref]

G. X. He and J. Tang, “Spectral optimization of color temperature tunable white LEDs with excellent color rendering and luminous efficacy,” Opt. Lett. 39(19), 5570–5573 (2014).
[Crossref]

Tsao, J. Y.

P.-C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9(6), 405–412 (2013).
[Crossref]

Vaicekauskas, R.

A. Zukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[Crossref]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

van Trigt, C.

C. van Trigt, “Color rendering, a reassessment,” Color Res. Appl. 24(3), 197–206 (1999).
[Crossref]

Veitch, J.

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

Wang, Z.

Wei, M.

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.

M. Wei, W. Bao, and H. Huang, “Consideration of Light Level in Specifying Light Source Color Rendition,” Leukos, Online Before Print. DOI: 10.1080/15502724.2018.1448992 (2018).
[Crossref]

M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
[Crossref]

Wei, M. C.

M. C. Wei and K. W. Houser, “Systematic Changes in Gamut Size Affect Color Preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

Whitehead, L.

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref]

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

Wilkerson, A.

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
[Crossref]

Xu, H.

Yan, H. F.

Yang, W.

Zhang, F.

Zhang, G. L.

Zhang, M. H.

Zhang, W. L.

Zhong, P.

Zukauskas, A.

A. Zukauskas, R. Vaicekauskas, and M. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[Crossref]

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

Annu. Rev. Psychol. (1)

A. J. Elliot and M. A. Maier, “Color psychology: effects of perceiving color on psychological functioning in humans,” Annu. Rev. Psychol. 65(1), 95–120 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[Crossref]

Color Res. Appl. (4)

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour Appearance Rating of Familiar Real Objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

C. van Trigt, “Color rendering, a reassessment,” Color Res. Appl. 24(3), 197–206 (1999).
[Crossref]

M. S. Rea and J. P. Freyssinier, “Color Rendering: Beyond Pride and Prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. X. He and J. Tang, “Spectral Optimization of Phosphor-Coated White LEDs for Color Rendering and Luminous Efficacy,” IEEE Photon. Technol. Lett. 26(14), 1450–1453 (2014).
[Crossref]

J. Appl. Phys. (1)

Q. Dai, L. X. Hao, Y. Lin, and Z. Cui, “Spectral optimization simulation of white light based on the photopic eye-sensitivity curve,” J. Appl. Phys. 119(5), 053103 (2016).
[Crossref]

J. Disp. Technol. (1)

P.-C. Hung and J. Y. Tsao, “Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression,” J. Disp. Technol. 9(6), 405–412 (2013).
[Crossref]

J. Mod. Opt. (1)

S. Soltic and A. Chalmers, “Prospects for 4-laser white-light sources,” J. Mod. Opt. 66(3), 271–280 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

Leukos (6)

J. B. Protzman and K. W. Houser, “LEDs for general illumination: The state of the science,” Leukos 3, 121–142 (2006).

K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” Leukos 12(1-2), 39–50 (2016).
[Crossref]

M. P. Royer, “Comparing Measures of Average Color Fidelity,” Leukos 14(2), 69–85 (2018).
[Crossref]

M. C. Wei and K. W. Houser, “Systematic Changes in Gamut Size Affect Color Preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with Diminished Yellow Emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

M. P. Royer, K. W. Houser, and A. David, “Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area,” Leukos 14(3), 149–165 (2018).
[Crossref]

Light. Res. Technol. (6)

J. Veitch, G. Newsham, P. Boyce, and C. Jones, “Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach,” Light. Res. Technol. 40(2), 133–151 (2008).
[Crossref]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimization of colour quality of LED lighting with reference to memory colours,” Light. Res. Technol. 44(1), 7–15 (2012).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Colour gamut size and shape influence colour preference,” Light. Res. Technol. 49(8), 992–1014 (2017).
[Crossref]

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Light. Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. P. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol. 49(8), 966–991 (2017).
[Crossref]

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Light. Res. Technol. 51(3), 331–352 (2018).
[Crossref]

Opt. Eng. (2)

A. Chalmers and S. Soltic, “Light source optimization: spectral design and simulation of four-band white-light sources,” Opt. Eng. 51(4), 044003 (2012).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Status Solidi A (1)

K. A. Bulashevich, A. V. Kulik, and S. Y. Karpov, “Optimal ways of colour mixing for high-quality white-light LED sources,” Phys. Status Solidi A 212(5), 914–919 (2015).
[Crossref]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Other (18)

DOE, “Solid-State Lighting 2017 Suggested Research Topics Supplement,” (2017).

CIE, “13.3: Method of measuring and specifying colour rendering properties of light sources,” 3rd Ed., (Commission Internationale de l’Eclairage, 1995), p. 16.

CEC, “Building Energy Standard Title 24, Part 6, Appendix JA8, Qualification Requirements for High Efficacy Light Sources,” (2016).

M. Wei, K. Houser, A. David, and M. Krames, “Effect of gamut shape on color preference,” in CIE 2016 Lighting Quality and Energy Efficiency, (Vienna (Austria): Commission Internationale de l'Eclairage., Melbourne, Australia, 2016), pp. 32–41.

M. Wei, W. Bao, and H. Huang, “Consideration of Light Level in Specifying Light Source Color Rendition,” Leukos, Online Before Print. DOI: 10.1080/15502724.2018.1448992 (2018).
[Crossref]

Y. Kawashima, Y. Ohno, and S. Oh, “Vision Experiment on Verification of Hunt Effect for Lighting,” in 11th Biennial Joint CIE/USNC and CNC/CIE Technical Conference, 2017).

CIE, “224:2017 CIE 2017 Colour Fidelity Index for accurate scientific use,” (Commision Internationale de L'Eclairage, 2017).

IES, “IES-TM-30-18 Method for Evaluating Light Source Color Rendition,” (The Illuminating Engineering Society of North America, 2018), p. 34.

NEMA, “ANSI/NEMA C78.377-2017 American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting Products,” (National Electral Manufacturers Association, 2017), p. 48.

A. David, T. Esposito, K. Houser, M. Royer, K. Smet, and L. Whitehead, “A Vector Field Color Rendition Model for Characterizing Color Shifts and Metameric Mismatch,” Leukos, Online before print. DOI: 10.1080/15502724.2018.1554369 (2019).
[Crossref]

M. Royer, “Spectral power distributions,” figshare, DOI: 10.6084/m9.figshare.7704566.v1 (2019).

M. Royer, “Color Rendition Characteristics,” figshare, DOI: 10.6084/m9.figshare.7704521.v1 (2019).

IES, “IES TM-30-18 Advanced Calculator Tool v2.00,” (Illuminating Engineering Society of North America, 2018).

M. Royer, “Custom Color Rendition Calculator (1.04),” figshare, DOI: 10.6084/m9.figshare.7704605.v1 (2019).

M. Royer, “LER versus color rendition by ANSI/IES TM-30-18 hue angle bin,” figshare, DOI: 10.6084/m9.figshare.7704620.v1 (2019).

M. Royer, M. Wei, A. Wilkerson, and S. Safranak, “Experimental validation of color rendition specification criteria based on ANSI/IES TM-30-18,” Light. Res. Technol., Online before print. DOI: 10.1177/1477153519857625 (2019).
[Crossref]

M. Royer, Analysis of Color Rendition Specification Criteria, SPIE OPTO (SPIE, 2019), Vol. 10940.

L. J. Sandahl, T. L. Gilbride, M. R. Ledbetter, H. Steward, and C. Calwell, “Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market,” (Pacific Northwest National Laboratory (PNNL), 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. LER versus color characteristics for all theoretical SPDs (light), theoretical SPDs with Rf ≥ 80 (medium) and commercially-available LED products (black).
Fig. 2.
Fig. 2. LER versus color characteristics for three groups of theoretical SPDs: narrow (dark), medium (medium), and wide (light).
Fig. 3.
Fig. 3. Local chroma shift and local hue shift for the theoretical white-light SPDs with the highest LER values.
Fig. 4.
Fig. 4. LER versus average color fidelity for theoretical optimizations (lines) and commercially available LED products (points). Average color fidelity is characterized using either Rf or Ra.
Fig. 5.
Fig. 5. SPDs optimized for maximum LER at a given color fidelity value, Rf (top) or Ra (bottom) and theoretical (left) or realistic (right) constraints. All SPDs are normalized to equal lumen output. To preserve legibility, the vertical axis has a different scale for the theoretical and realistic scenarios, and some peaks for the theoretical scenario are not visible.
Fig. 6.
Fig. 6. LER versus IES Rf for SPDs optimized using an Ra criterion (yellow/orange) or an Rf criterion (blue) from 75 to 95.
Fig. 7.
Fig. 7. Local chroma shift (bottom) and local hue shift (top) for SPDs optimized for maximum LER under a specified average color fidelity measure (Rf or Ra) and set of spectral characteristics (theoretical or realistic). The gray dashed lines indicate the peaks of the gamut shape function without color rendition criteria, as shown in Fig. 3.
Fig. 8.
Fig. 8. Maximum LER achieved under various color rendition thresholds involving criteria for red rendition, with realistic spectral characteristics.
Fig. 9.
Fig. 9. Maximum LER achieved in the theoretical and realistic scenarios with TM-30 based color rendition criteria as identified in Table 1.
Fig. 10.
Fig. 10. Local chroma shift (bottom) and local hue shift (top) for SPDs optimized for maximum LER under TM-30-based color rendition criteria (Table 1), with realistic and theoretical spectral characteristics. The gray dashed lines indicate the peaks of the gamut shape function without color rendition criteria, as shown in Fig. 3.
Fig. 11.
Fig. 11. SPDs optimized for maximum LER under TM-30-based color rendition criteria (Table 1), with theoretical and realistic spectral characteristics. All SPDs are normalized to equal lumen output. To preserve legibility, the vertical axis has a different scale for the theoretical and realistic scenarios, and some peaks for the theoretical scenario are not visible.
Fig. 12.
Fig. 12. Local chroma shift and local hue shift for commercially-available phosphor-converted LED products. The gray dashed lines indicate the peaks of the gamut shape function without color rendition criteria, as shown in Fig. 3.

Tables (2)

Tables Icon

Table 1. Proposed specification criteria for use with ANSI/IES TM-30-18

Tables Icon

Table 2. Summary of characteristics for LED primaries of optimized SPDs

Metrics