Abstract

We design and fabricate a novel highly integrated all-fiber single mode-multimode-single mode long period grating (SMS-LPG) refractometer. The experiment and simulation results confirm that the powerful local refractive index modulation capability of the multimode fiber (MMF) simultaneously reduces the length of the LPG and achieves excellent refractive index sensitivity. The spectral characteristics and sensing responses of different duty cycles are investigated. The optimized SMS-LPG sample achieved a refractive index sensitivity of 427.01 nm/RIU. The miniature SMS-LPG refractometer is a new sensor for measuring the external refractive index.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-insensitive refractometer based on an RI-modulated singlemode-multimode-singlemode fibre structure

Pengfei Wang, Shuo Zhang, Ruoning Wang, Gerald Farrell, Meng Zhang, Tao Geng, Elfed Lewis, and Ke Tian
Opt. Express 27(10) 13754-13764 (2019)

High sensitivity SMS fiber structure based refractometer – analysis and experiment

Qiang Wu, Yuliya Semenova, Pengfei Wang, and Gerald Farrell
Opt. Express 19(9) 7937-7944 (2011)

Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
    [Crossref]
  2. K. Dandapat, S. M. Tripathi, Y. Chinifooroshan, W. J. Bock, and P. Mikulic, “Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E coli bacteria in water,” Opt. Lett. 41(18), 4198–4201 (2016).
    [Crossref]
  3. F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
    [Crossref]
  4. S. Bandyopadhyay, I. Del Villar, N. Basumallick, P. Biswas, T. K. Dey, and S. Bandyopadhyay, “Long Period Fiber Grating for Biosensing: An Improved Design Methodology to Enhance Add-Layer Sensitivity,” J. Lightwave Technol. 36(4), 1178–1184 (2018).
    [Crossref]
  5. B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
    [Crossref]
  6. B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
    [Crossref]
  7. R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
    [Crossref]
  8. A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
    [Crossref]
  9. Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
    [Crossref]
  10. C. Colaco, P. Caldas, I. Del Villar, R. Chibante, and G. Rego, “Arc-Induced Long-Period Fiber Gratings in the Dispersion Turning Points,” J. Lightwave Technol. 34(19), 4584–4590 (2016).
    [Crossref]
  11. J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
    [Crossref]
  12. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref]
  13. C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
    [Crossref]
  14. W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
    [Crossref]
  15. L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  16. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [Crossref]
  17. J. Villatoro and D. Monzon-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24(3), 1409–1413 (2006).
    [Crossref]
  18. Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
    [Crossref]
  19. J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
    [Crossref]
  20. J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
    [Crossref]
  21. Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
    [Crossref]
  22. R. Yun-Jiang, W. Yi-Ping, R. Zeng-Ling, and Z. Tao, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  23. D. J. J. Hu, J. L. Lim, M. Jiang, Y. X. Wang, F. Luan, P. P. Shum, H. F. Wei, and W. J. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref]
  24. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref]
  25. Y. Zhang, A. Zhou, B. Qin, H. Deng, Z. Liu, J. Yang, and L. Yuan, “Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers,” J. Lightwave Technol. 32(9), 1734–1740 (2014).
    [Crossref]
  26. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]

2019 (3)

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
[Crossref]

2018 (5)

S. Bandyopadhyay, I. Del Villar, N. Basumallick, P. Biswas, T. K. Dey, and S. Bandyopadhyay, “Long Period Fiber Grating for Biosensing: An Improved Design Methodology to Enhance Add-Layer Sensitivity,” J. Lightwave Technol. 36(4), 1178–1184 (2018).
[Crossref]

Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref]

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

2017 (3)

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

2016 (2)

2015 (1)

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

2014 (2)

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Y. Zhang, A. Zhou, B. Qin, H. Deng, Z. Liu, J. Yang, and L. Yuan, “Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers,” J. Lightwave Technol. 32(9), 1734–1740 (2014).
[Crossref]

2013 (2)

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

2012 (1)

2011 (1)

2008 (1)

2006 (2)

2003 (2)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

R. Yun-Jiang, W. Yi-Ping, R. Zeng-Ling, and Z. Tao, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Ahmed, F.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Ahsani, V.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Ayupova, T.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Bai, Z.

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Bandyopadhyay, S.

Bang, O.

Basumallick, N.

Bekmurzayeva, A.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Bekniyazov, I.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Biswas, P.

Bock, W. J.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

K. Dandapat, S. M. Tripathi, Y. Chinifooroshan, W. J. Bock, and P. Mikulic, “Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E coli bacteria in water,” Opt. Lett. 41(18), 4198–4201 (2016).
[Crossref]

Bradley, C.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Cai, L.

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Caldas, P.

Campopiano, S.

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

Chibante, R.

Chinifooroshan, Y.

Cho, Y.

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Colaco, C.

Dandapat, K.

de Oliveira, V.

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Del Villar, I.

Deng, H.

Dey, T. K.

Ding, M.

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

Dominik, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Du, B.

Dukenbayev, K.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Esposito, F.

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

Farrell, G.

Fu, C.

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Gao, S.

Guan, B. O.

Guan, C.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Guo, K.

He, J.

Hu, D. J. J.

Hu, H.-F.

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Huang, J.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Iadicicco, A.

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Janczuk-Richter, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Ji, W.

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

Jiang, M.

Jin, L.

Jo, S.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Joe, H.-E.

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Jun, M. B. G.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Kalinowski, H. J.

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Kamikawachi, R. C.

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Kaur, A.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Koba, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Kuhne, J. F.

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Lan, X.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Li, H.

Li, J.

Li, S.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Liao, C.

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Lim, J. L.

Lin, B.

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

Liu, W.

Liu, Z.

Los, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Luan, F.

Mikulic, P.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

K. Dandapat, S. M. Tripathi, Y. Chinifooroshan, W. J. Bock, and P. Mikulic, “Compact and cost-effective temperature-insensitive bio-sensor based on long-period fiber gratings for accurate detection of E coli bacteria in water,” Opt. Lett. 41(18), 4198–4201 (2016).
[Crossref]

Min, B.-K.

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Molardi, C.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Monzon-Hernandez, D.

Ng, C.

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

Niedziólka-Jönsson, J.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Niu, Y.

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Qin, B.

Ran, Y.

Ranjan, R.

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

Rego, G.

Rindorf, L.

Rocha, A. M.

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Rozniecka, E.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Shaimerdenova, M.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Shi, J.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Shum, P. P.

Smietana, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sun, L.-P.

Sypabekova, M.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Tan, Y.-N.

Tang, J.

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Tao, Z.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tian, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Tjin, S.

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

Tong, W. J.

Tosi, D.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

Toyserkani, E.

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

Tripathi, S. M.

Villatoro, J.

Wang, H.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Wang, M.

Wang, Q.

Wang, Y.

Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref]

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Wang, Y. X.

Wei, H. F.

Wu, B.

Wu, S.

Xiao, H.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

Yang, B.

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

Yang, J.

Yin, B.

Yin, Y.

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

Yi-Ping, W.

Yuan, L.

Y. Zhang, A. Zhou, B. Qin, H. Deng, Z. Liu, J. Yang, and L. Yuan, “Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers,” J. Lightwave Technol. 32(9), 1734–1740 (2014).
[Crossref]

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Yun, H.

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

Yun-Jiang, R.

Zeng-Ling, R.

Zhang, F.

Zhang, J.

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, Y.

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Zhong, X.

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

Zhou, A.

IEEE Photonics Technol. Lett. (3)

F. Ahmed, V. Ahsani, S. Jo, C. Bradley, E. Toyserkani, and M. B. G. Jun, “Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer,” IEEE Photonics Technol. Lett. 31(1), 74–77 (2019).
[Crossref]

R. Ranjan, F. Esposito, A. Iadicicco, and S. Campopiano, “Arc-Induced Long Period Gratings in Phosphorus-Doped Fiber,” IEEE Photonics Technol. Lett. 29(7), 611–614 (2017).
[Crossref]

Y. Cho, F. Ahmed, H.-E. Joe, H. Yun, B.-K. Min, and M. B. G. Jun, “Fabrication of a Screw-Shaped Long-Period Fiber Grating for Refractive Index Sensing,” IEEE Photonics Technol. Lett. 29(24), 2242–2245 (2017).
[Crossref]

IEEE Sens. J. (1)

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

J. Lightwave Technol. (6)

Meas. Sci. Technol. (2)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

J. F. Kuhne, A. M. Rocha, V. de Oliveira, H. J. Kalinowski, and R. C. Kamikawachi, “Experimental and numerical study on refractive index sensors based on fibre Bragg gratings inscribed in multimode fibre,” Meas. Sci. Technol. 29(2), 025102 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Sens. Actuators, B (3)

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators, B 198, 384–387 (2014).
[Crossref]

C. Guan, X. Tian, S. Li, X. Zhong, J. Shi, and L. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators, B 188, 768–771 (2013).
[Crossref]

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Actuators, B 250, 32–38 (2017).
[Crossref]

Sensors (4)

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin,” Sensors 18(12), 4298–4312 (2018).
[Crossref]

B. Yang, B. Yang, J. Zhang, Y. Yin, Y. Niu, and M. Ding, “A Sensing Peak Identification Method for Fiber Extrinsic Fabry–Perot Interferometric Refractive Index Sensing,” Sensors 19(1), 96–104 (2019).
[Crossref]

W. Ji, S. Tjin, B. Lin, and C. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors 13(10), 14055–14063 (2013).
[Crossref]

J. Tang, C. Fu, Z. Bai, C. Liao, and Y. Wang, “Sensing Characteristics of Tilted Long Period Fiber Gratings Inscribed by Infrared Femtosecond Laser,” Sensors 18(9), 3003–3013 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic diagram of the SMS-LPG preparation devices. (b1)-(b4) Preparation process and microscopic images of the SMS-LPG. (c) Schematic diagram of the completed SMS-LPG.
Fig. 2.
Fig. 2. (a) The transmission light field distribution of the SMS-LPG (1531 nm). (b) Transmission spectra for three duty cycles and the cross-sectional light field distribution.
Fig. 3.
Fig. 3. Resonance wavelength shifts of the three models at different external refractive indices.
Fig. 4.
Fig. 4. Transmission light field distribution and evanescent field intensity of the three samples.
Fig. 5.
Fig. 5. Schematics and microscopic images of the three different duty cycles of the SMS-LPG.
Fig. 6.
Fig. 6. Transmission spectral evolution of the three SMS-LPG samples (a) 100/500 µm (b) 200/400 µm (c) 400/200 µm. (d) Final transmission spectra of the three samples.
Fig. 7.
Fig. 7. Schematic diagram of the measurement setup.
Fig. 8.
Fig. 8. The spectral drift behavior of the samples at different refractive indices (a) 100/500 µm (b) 200/400 µm (c) 400/200 µm. (d) The wavelength shift characteristics of the three samples in the different refractive indices.
Fig. 9.
Fig. 9. Spectral drift behavior of the three samples at different temperatures (a) 100/500 µm (b) 200/400 µm (c) 400/200 µm. (d) The temperature response of the three samples at the resonance peaks.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ   =   ( n c o e f f n k , c l e f f ) Λ / k
κ 1 m ( z ) = 1 4 { h m × e 1 z e 1 × h m z } z d A

Metrics