Abstract

The absorption of terahertz radiation by a thin metal absorber in the bolometers of five different designs is analyzed. Main attention is paid to bolometers of three basic configurations: (i) conventional bolometers with a double-layer main optical cavity, (ii) conventional bolometers with an additional optical cavity, and (iii) inverted bolometers with an additional optical cavity. Analytical expressions that allow calculating the absorption spectra in all the considered bolometers are obtained. It is shown that conventional bolometers only with the main optical cavity made up of two dielectric layers, as well as conventional and inverted bolometers with both main and additional optical cavities, can have the absorptance close to unity in the terahertz range. At the same time, conventional terahertz bolometers are mainly selective, whereas inverted ones are broadband.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals

Ming Chen, Chen Chen, Shijie Deng, Houquan Liu, Chuanxin Teng, Yu Cheng, Hongyan Yang, Ronghui Xu, Hongchang Deng, and Libo Yuan
OSA Continuum 2(8) 2477-2486 (2019)

Coherent perfect absorption in artificially engineered nanometer metal/semiconductor composite films at oblique incidence

Jinglan Zou, Feng Xiong, Jianfa Zhang, and Zhihong Zhu
OSA Continuum 2(11) 3251-3261 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
    [Crossref]
  2. J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
    [Crossref]
  3. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
    [Crossref]
  4. J.-Y. Jung, J. Y. Park, S. Han, A. S. Weling, and D. P. Neikirk, “Wavelength-selective infrared Salisbury screen absorber,” Appl. Opt. 53(11), 2431–2436 (2014).
    [Crossref]
  5. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
    [Crossref]
  6. T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, and R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
    [Crossref]
  7. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60(3), 257–261 (1992).
    [Crossref]
  8. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  9. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
    [Crossref]
  10. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol., A 6(3), 1686–1689 (1988).
    [Crossref]
  11. S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
    [Crossref]
  12. M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
    [Crossref]
  13. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
    [Crossref]
  14. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
    [Crossref]
  15. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33(5), 440–442 (2008).
    [Crossref]
  16. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
    [Crossref]
  17. N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
    [Crossref]
  18. M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
    [Crossref]
  19. N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
    [Crossref]
  20. N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
    [Crossref]
  21. M. A. Dem’yanenko, “Efficient broadband terahertz radiation detectors based on bolometers with a thin metal absorber,” Tech. Phys. 63(1), 120–125 (2018).
    [Crossref]
  22. M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
    [Crossref]
  23. D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
    [Crossref]
  24. F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
    [Crossref]
  25. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters. Part I. Theory,” J. Opt. Soc. Am. 37(6), 451–465 (1947).
    [Crossref]
  26. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44(3), 188–191 (1954).
    [Crossref]
  27. C. Hilsum, “Infrared absorption of thin metal films at non-normal incidence,” J. Opt. Soc. Am. 45(2), 135–136 (1955).
    [Crossref]
  28. P. A. Silberg, “Infrared absorption of three-layer films,” J. Opt. Soc. Am. 47(7), 575–578 (1957).
    [Crossref]
  29. B. Carli and D. Iorio-Fili, “Absorption of composite bolometers,” J. Opt. Soc. Am. 71(8), 1020–1025 (1981).
    [Crossref]
  30. K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys. 34(4), 379–387 (1993).
    [Crossref]
  31. J. J. Monzón and L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33(22), 5137–5141 (1994).
    [Crossref]
  32. M. A. Dem’yanenko, “Infrared absorption in a multilayer bolometric structure with a thin metallic absorber,” J. Opt. Technol. 84(1), 34–40 (2017).
    [Crossref]
  33. M. A. Dem’yanenko, “IR and THz bolometric detectors with absorbers characterized by frequency dispersion of conductivity,” Tech. Phys. 64(1), 127–132 (2019).
    [Crossref]
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, 1965).
  35. V. V. Medvedev, V. M. Gubarev, and C. J. Lee, “Optical performance of a dielectric-metal-dielectric antireflective absorber structure,” J. Opt. Soc. Am. A 35(8), 1450–1456 (2018).
    [Crossref]
  36. V. T. Bly and J. T. Cox, “Infrared absorber for ferroelectric detectors,” Appl. Opt. 33(1), 26–30 (1994).
    [Crossref]
  37. C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
    [Crossref]
  38. L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321(5895), 1457–1461 (2008).
    [Crossref]

2019 (1)

M. A. Dem’yanenko, “IR and THz bolometric detectors with absorbers characterized by frequency dispersion of conductivity,” Tech. Phys. 64(1), 127–132 (2019).
[Crossref]

2018 (2)

V. V. Medvedev, V. M. Gubarev, and C. J. Lee, “Optical performance of a dielectric-metal-dielectric antireflective absorber structure,” J. Opt. Soc. Am. A 35(8), 1450–1456 (2018).
[Crossref]

M. A. Dem’yanenko, “Efficient broadband terahertz radiation detectors based on bolometers with a thin metal absorber,” Tech. Phys. 63(1), 120–125 (2018).
[Crossref]

2017 (1)

2016 (2)

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

2015 (3)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
[Crossref]

2014 (2)

J.-Y. Jung, J. Y. Park, S. Han, A. S. Weling, and D. P. Neikirk, “Wavelength-selective infrared Salisbury screen absorber,” Appl. Opt. 53(11), 2431–2436 (2014).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

2012 (3)

T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, and R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
[Crossref]

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

2011 (1)

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

2010 (1)

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

2009 (1)

2008 (4)

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33(5), 440–442 (2008).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321(5895), 1457–1461 (2008).
[Crossref]

2007 (2)

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

2006 (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

2005 (1)

1994 (2)

1993 (1)

K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys. 34(4), 379–387 (1993).
[Crossref]

1992 (3)

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
[Crossref]

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60(3), 257–261 (1992).
[Crossref]

1988 (1)

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol., A 6(3), 1686–1689 (1988).
[Crossref]

1981 (1)

1957 (1)

1955 (1)

1954 (1)

1947 (1)

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

Aseev, A. L.

Bauer, S.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60(3), 257–261 (1992).
[Crossref]

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
[Crossref]

Bauer-Gogonea, S.

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
[Crossref]

Behnken, B. N.

Bell, L. E.

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321(5895), 1457–1461 (2008).
[Crossref]

Beratan, H.

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Bly, V. T.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, 1965).

Bozhevolnyi, S. I.

Carli, B.

Chamberlin, D. R.

Chirumamilla, M.

Corbin, M.

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Corrigan, T. D.

Coutaz, J.-L.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Cox, J. T.

Dem’yanenko, M. A.

M. A. Dem’yanenko, “IR and THz bolometric detectors with absorbers characterized by frequency dispersion of conductivity,” Tech. Phys. 64(1), 127–132 (2019).
[Crossref]

M. A. Dem’yanenko, “Efficient broadband terahertz radiation detectors based on bolometers with a thin metal absorber,” Tech. Phys. 63(1), 120–125 (2018).
[Crossref]

M. A. Dem’yanenko, “Infrared absorption in a multilayer bolometric structure with a thin metallic absorber,” J. Opt. Technol. 84(1), 34–40 (2017).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

Dennison, D. M.

Ding, F.

Drew, H. D.

Esaev, D. G.

M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

Faist, J.

Fomin, B. I.

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
[Crossref]

Gubarev, V. M.

Guo, S.-H.

Hadley, L. N.

Han, S.

Hang, Z. H.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Hanson, C.

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Herman, W. N.

Hilsum, C.

Hosako, I.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Hou, B.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

Hu, Q.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
[Crossref]

Imai, R.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

Iorio-Fili, D.

Irie, T.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Jakobsen, H.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Jung, J.-Y.

Kanda, N.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

Karunasiri, G.

Knyazev, B. A.

M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

Kolb, P. W.

Konishi, K.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

Kristensen, P. K.

Kulipanov, G. N.

M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Kurashina, S.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Kuwata-Gonokami, M.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

Lai, Y.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

Lee, A. W. M.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
[Crossref]

Lee, C. J.

Li, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

Liddiard, K. C.

K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys. 34(4), 379–387 (1993).
[Crossref]

Lu, W.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Luo, J.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

Mantese, J. V.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

McKenney, S.

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Medvedev, V. V.

Meilhan, J.

F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
[Crossref]

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Miyoshi, M.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

Monzón, J. J.

Murray, M. E.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

Neikirk, D. P.

Nemoto, N.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

Nguyen, D.-T.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Nicolas, J.-A.

F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
[Crossref]

Niklaus, F.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Oda, N.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Ohkubo, S.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

Ouvrier-Buffet, J.-L.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Ovsyuk, V. N.

Owen, R.

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Park, D. H.

Park, J. Y.

Parsons, A. D.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol., A 6(3), 1686–1689 (1988).
[Crossref]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol., A 6(3), 1686–1689 (1988).
[Crossref]

Pedersen, K.

Phaneuf, R. J.

Ploss, B.

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
[Crossref]

Reno, J. L.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Roberts, A. S.

Robrish, P. R.

Sánchez-Soto, L. L.

Sano, M.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Sasaki, T.

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Sekine, N.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Silberg, P. A.

Simoens, F.

F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
[Crossref]

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Sonoda, K.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

Sudoh, T.

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Sudou, T.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
[Crossref]

Thompson, M. P.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

Thrush, C. M.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

Troxell, J. R.

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

Vieider, C.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Vinokurov, N. A.

M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
[Crossref]

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

Wang, D.

Weling, A. S.

Williams, B. S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, 1965).

Yoneyama, H.

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

Am. J. Phys. (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys. 60(3), 257–261 (1992).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

S. Bauer, S. Bauer-Gogonea, and B. Ploss, “The physics of pyroelectric infrared devices,” Appl. Phys. B 54(6), 544–551 (1992).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Imaging with a 90frames/s microbolometer focal plane array and highpower terahertz free electron laser,” Appl. Phys. Lett. 92(13), 131116 (2008).
[Crossref]

C. R. Phys. (1)

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photonics Technol. Lett. 18(13), 1415–1417 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure,” IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016).
[Crossref]

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements,” IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012).
[Crossref]

Infrared Phys. (1)

K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys. 34(4), 379–387 (1993).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

F. Simoens, J. Meilhan, and J.-A. Nicolas, “Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti,” J. Infrared, Millimeter, Terahertz Waves 36(10), 961–985 (2015).
[Crossref]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (1)

J. Opt. Technol. (2)

J. Vac. Sci. Technol., A (2)

M. P. Thompson, J. R. Troxell, M. E. Murray, C. M. Thrush, and J. V. Mantese, “Infrared absorber for pyroelectric detectors,” J. Vac. Sci. Technol., A 25(3), 437–440 (2007).
[Crossref]

A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol., A 6(3), 1686–1689 (1988).
[Crossref]

Light: Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light: Sci. Appl. 1(8), e24 (2012).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (2)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B 90(16), 165128 (2014).
[Crossref]

Proc. SPIE (4)

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
[Crossref]

N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, “Development of terahertz focal plane arrays and handy camera,” Proc. SPIE 8012, 80121B (2011).
[Crossref]

C. Hanson, H. Beratan, R. Owen, M. Corbin, and S. McKenney, “Uncooled thermal imaging at Texas Instruments,” Proc. SPIE 1735, 17–26 (1992).
[Crossref]

Sci. Rep. (1)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2015).
[Crossref]

Science (1)

L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321(5895), 1457–1461 (2008).
[Crossref]

Tech. Phys. (2)

M. A. Dem’yanenko, “IR and THz bolometric detectors with absorbers characterized by frequency dispersion of conductivity,” Tech. Phys. 64(1), 127–132 (2019).
[Crossref]

M. A. Dem’yanenko, “Efficient broadband terahertz radiation detectors based on bolometers with a thin metal absorber,” Tech. Phys. 63(1), 120–125 (2018).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, 1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Bolometric THz detectors of conventional (C) and inverted (I) types. (a) C-type only with the main optical cavity, (b) C-type with an additional optical cavity in the form of a vacuum gap g, (c) C-type with a thick dielectric layer d1 in the main optical cavity, (d) C-type with an additional optical cavity in the form of a dielectric layer d1, (e) I-type with an additional optical cavity in the form of a vacuum gap g. AR - antireflective coating, w – window, a - metallic THz absorber, d - dielectric membrane of the bolometer, h – vacuum gap of the main optical cavity, r – reflector, b – bolometer fabricated on substrate s.
Fig. 2.
Fig. 2. Propagation of electromagnetic waves in two multilayer structures consisting of the metallic absorber a and reflector r, and two dielectric layers δ and γ. (a) Layers δ and γ are located between the absorber and reflector. TE wave. (b) Layers δ and γ are located on the opposite sides of the absorber. TM wave.
Fig. 3.
Fig. 3. Spectral dependences of the absorptances for the conventional bolometers without an additional optical cavity and with the main optical cavity made as a 25 µm vacuum gap (curve 1), or as a 2 µm vacuum gap and a 12.5 µm thick silicon nitride layer deposited on the reflector (2); as well as for the inverted bolometer with the main and additional vacuum optical cavities with the thicknesses of 2 and 25 µm, respectively (3). Solid lines - analytical, dashed line - matrix calculation.
Fig. 4.
Fig. 4. Spectral dependences of the absorptances for the inverted type bolometer [Fig. 1(e)] with the main and additional vacuum optical cavities with the thicknesses of 2 and 15 µm, respectively, in the case of the three-layer anti-reflection coated silicon substrate (curve 1), as well as for conventional type bolometers [Fig. 1(b)] with the main and additional vacuum optical cavities with the thicknesses of 3 and 50 µm, respectively, in the cases of the three-layer (2) and single-layer (3) anti-reflection coated input silicon windows. Solid line - analytical, dashed line - matrix calculation.
Fig. 5.
Fig. 5. Spectral dependences of the absorptances for the conventional bolometers with the additional optical cavity made of a thick dielectric layer deposited on the absorber [Fig. 1(d)]. The sheet resistance of the absorber, thickness ⋅ refractive index of the main and additional optical cavities are the following: 32.6 Ω/□, 25 ⋅ 1 and 7.35 ⋅ 3.4 µm (curve 1), 377 Ω/□, 25 ⋅ 1 and 14.7 ⋅ 3.4 µm (2), 188 Ω/□, 25 ⋅ 1 and 15.6 ⋅ 1.6 µm (3), 188 Ω/□, 15.6 ⋅ 1.6 and 15.6 ⋅ 1.6 µm (4). Solid line - analytical, dashed line - matrix calculation.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Q n = ( E x ( z n ) H y ( z n ) ) , M n = ( cos ( φ n ) ( i / p n ) sin ( φ n ) i p n sin ( φ n ) cos ( φ n ) )
S = 1 / 2 Re ( E x H y ) = 1 / 2 | E x | 2 Re ( H y / H y E x E x ) = 1 / 2 | E x | 2 Re ( Y ) ,
S = 1 / 2 Re ( E y H x ) = 1 / 2 | E y | 2 Re ( H x / H x E y E y ) = 1 / 2 | E y | 2 Re ( Y ) .
M m = M m = ( 1 0 f 1 ) ,
Q v = M B Q M S ,
Y B = H v y E v x = m B 21 + m B 22 Y MS m B 11 + m B 12 Y MS ,
r = E v 2 E v 1 = p v Y B p v + Y B ,
r = ( m B 11 + m B 12 Y MS ) p v ( m B 21 + m B 22 Y MS ) ( m B 11 + m B 12 Y MS ) p v + ( m B 21 + m B 22 Y MS ) .
t MS = E MS x E v 1 = 2 p v ( m B 11 + m B 12 Y MS ) p v + ( m B 21 + m B 22 Y MS ) .
Y MS = f r + p s .
M B = ( A ~ i B ~ i C ~ + A ~ f a D ~ i B ~ f a ) ,
R = [ A ~ ( f a p v ) + Y MS D ~ ] 2 + [ C ~ + Y MS B ~ ( f a p v ) ] 2 D I 1 ,
T MS = 4 p v Y MS D I 1 , T s = 4 p v p s D I 1 ,
A a = 4 p v f a [ A ~ 2 + B ~ 2 Y MS 2 ] D I 1 , A r = 4 p v f r D I 1 .
A a = 4 p v f a ( D ~ / D ~ B ~ B ~ ) 2 + ( f a + p v ) 2 , A r = 0 ,
M B = ( A ~ i f a A ~ 1 i B ~ f a B ~ 1 i C ~ + f a C ~ 1 D ~ i f a D ~ 1 ) ,
R = N R 2 D I 2 ,
T MS = 4 p v Y MS D I 2 , T s = 4 p v p s D I 2 ,
A a = 4 p v f a [ C γ 2 + Y MS 2 S γ 2 / p γ 2 ] D I 2 , A r = 4 p v f r D I 2 ,
D I 2 = [ f a C ~ 1 + A ~ p v + Y MS ( D ~ f a B ~ 1 p v ) ] 2 + [ C ~ + f a A ~ 1 p v + Y MS ( f a D ~ 1 + B ~ p v ) ] 2 ,
A a = 4 p v f a S γ 2 / p γ 2 ( D ~ f a B ~ 1 p v ) 2 + ( f a D ~ 1 + B ~ p v ) 2 , A r = 0.
T AR = p 3 p 1 t 12 2 t 23 2 1 + r 12 2 r 23 2 + 2 r 12 r 23 cos ( 2 κ 2 d 2 cos θ 2 ) ,

Metrics