Abstract

Rare-earth ion doped potassium yttrium double tungstate, RE:KY(WO4)2, is a promising candidate for small, power-efficient, on-chip lasers and amplifiers. There are two major bottlenecks that complicate the realization of such devices. Firstly, the anisotropic thermal expansion coefficient of KY(WO4)2 makes it challenging to integrate the crystal on glass substrates. Secondly, the crystal layer has to be, for example, <1 µm to obtain single mode, high refractive index contrast waveguides operating at 1550 nm. In this work, different adhesives and bonding techniques in combination with several types of glass substrates are investigated. An optimal bonding process will enable further processing towards the manufacturing of integrated active optical KY(WO4)2 devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cross sections and transition intensities of Tb3+ in KY(WO4)2

Maxim Demesh, Alexander Mudryi, Anatoliy Pavlyuk, Elena Castellano-Hernández, Christian Kränkel, and Nikolay Kuleshov
OSA Continuum 2(4) 1378-1385 (2019)

In-depth structural analysis of swift heavy ion irradiation in KY(WO4)2 for the fabrication of planar optical waveguides

Raimond Frentrop, Ilia Subbotin, Frans Segerink, Rico Keim, Victoria Tormo-Marquez, José Olivares, Kirill Shcherbachev, Sergey Yakunin, Igor Makhotkin, and Sonia M. Garcia-Blanco
Opt. Mater. Express 9(12) 4796-4810 (2019)

Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method

Pavel A. Loiko, Valery V. Filippov, Konstantin V. Yumashev, Nikolai V. Kuleshov, and Anatoly A. Pavlyuk
Appl. Opt. 51(15) 2951-2957 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]
  2. X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
    [Crossref]
  3. Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
    [Crossref]
  4. I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
    [Crossref]
  5. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937 (2010).
    [Crossref]
  6. S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
    [Crossref]
  7. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 16 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
    [Crossref]
  8. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3++, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
    [Crossref]
  9. D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
    [Crossref]
  10. F. Piantedosi, G. Y. Chen, T. M. Monro, and D. G. Lancaster, “Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1 µm,” Opt. Lett. 43(8), 1902 (2018).
    [Crossref]
  11. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691 (2012).
    [Crossref]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994 (2010).
    [Crossref]
  13. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501 (2013).
    [Crossref]
  14. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035 (2010).
    [Crossref]
  15. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  16. M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
    [Crossref]
  17. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
    [Crossref]
  18. SCHOTT, “MEMpax® Ultra-Thin Borosilicate Glass,” http://www.schott.com/advanced_optics/english/products/optical-materials/thin-glass/mempax/index.html .
  19. “ThermoFisher Scientific: Typical values of Microslides (Soda Lime Glass),” 8983 (n.d.).
  20. Schott, “MICROCROWN Microscopy Glass,” https://www.schott.com/advanced_optics/english/products/optical-materials/thin-glass/microscopy-glass-microcrown/index.html .
  21. S. Keyvaninia, M. Muneeb, S. Stankovic, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  22. S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
    [Crossref]
  23. W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
    [Crossref]
  24. G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200–400 °C range,” Sens. Actuators, A 36(2), 149–156 (1993).
    [Crossref]
  25. T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.
  26. Bohle, “UV-Klebstoff Verifix LV 740,” 1–2 (n.d.).
  27. NORLAND PRODUCTS INCORPORATED, “Norland Optical Adhesive 81,” 1–2 (1966).
  28. Epoxy Technology, “EPO-TEK 353ND,” 1–2 (2014).
  29. Epoxy Technology, “EPO-TEK 377,” 1–2 (2015).
  30. Dow Chemical Company, “CYCLOTENE TM 3000 Series Advanced Electronics Resins,” 1–10 (2012).
  31. M. A. Sefunc, “New architectures for integrated optics: low-loss tight bends and on-chip high-index-contrast potassium double tungstate waveguides,” University of Twente (2016).
  32. S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
    [Crossref]
  33. C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
    [Crossref]
  34. U. Tong and Q.-Y. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Willey & sons, inc, 1999).
  35. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
    [Crossref]

2018 (2)

2017 (1)

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

2016 (2)

2014 (2)

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 16 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (3)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stankovic, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501 (2013).
[Crossref]

2012 (2)

2011 (2)

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

2010 (5)

2006 (1)

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

2002 (1)

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

2001 (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

1993 (1)

G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200–400 °C range,” Sens. Actuators, A 36(2), 149–156 (1993).
[Crossref]

1988 (1)

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Aguiló, M.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937 (2010).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

Allenet, T.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Aravazhi, S.

Beecher, S. J.

Bolaños, W.

Borowiec, M. T.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Broquin, J.-E.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Brown, G.

Bucci, D.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Butashin, A. V.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Calmano, T.

Cantelar, E.

Canto, F.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Carjaval, J. J.

Carvajal, J. J.

Caviglia, A.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994 (2010).
[Crossref]

Chen, G. Y.

Couston, L.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

D’yakonov, V. P.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Díaz, F.

Dijkstra, M.

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

García-Blanco, S. M.

M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
[Crossref]

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 16 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Gavaldà, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

Geoffray, F.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Geskus, D.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3++, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]

Goetz, G.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Gösele, Q.-Y.

U. Tong and Q.-Y. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Willey & sons, inc, 1999).

Griebner, U.

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Grivas, C.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 16 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3++, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

Heck, J.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Herek, J. L.

Huber, G.

Hwang, S.

S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
[Crossref]

Jaque, D.

Jardinier, E.

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Jones, R.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kar, A. K.

Keyvaninia, S.

Kissinger, G.

G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200–400 °C range,” Sens. Actuators, A 36(2), 149–156 (1993).
[Crossref]

Kissinger, W.

G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200–400 °C range,” Sens. Actuators, A 36(2), 149–156 (1993).
[Crossref]

Klevtsova, R. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Konstantinova, A. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kooijman, R.

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Kränkel, C.

Krygin, I. M.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

Kwak, J.

S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
[Crossref]

Lancaster, D. G.

Lifante, G.

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

Lu, Q.

Martinussen, S. M.

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Mary, R.

Massons, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

Maszara, W. P.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Mateos, X.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937 (2010).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

McKitterick, J. B.

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Monro, T. M.

Mu, J.

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Müller, S.

Muneeb, M.

Murugan, G. S.

Ohara, S.

Orekhova, V. P.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Park, J. H.

S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
[Crossref]

Park, S.

S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
[Crossref]

Paschke, A.-G.

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Petermann, K.

Piantedosi, F.

Pollnau, M.

Prokhorov, A. D.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Rachkovskaya, G. E.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

Rodenas, A.

Roelkens, G.

S. Keyvaninia, M. Muneeb, S. Stankovic, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Sefunc, M. A.

M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
[Crossref]

M. A. Sefunc, “New architectures for integrated optics: low-loss tight bends and on-chip high-index-contrast potassium double tungstate waveguides,” University of Twente (2016).

Segerink, F. B.

Siebenmorgen, J.

Solé, R.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

Stankovic, S.

S. Keyvaninia, M. Muneeb, S. Stankovic, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Subramanian, A. Z.

Sysak, M.

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Szymczak, H.

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Tan, Y.

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Thomson, R. R.

Tong, U.

U. Tong and Q.-Y. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Willey & sons, inc, 1999).

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 16 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

van Emmerik, C. I.

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Van Thourhout, D.

S. Keyvaninia, M. Muneeb, S. Stankovic, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

Van Veldhoven, P. J.

Vázquez-Córdova, S. A.

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Wilkinson, J. S.

Wörhoff, K.

Yong, Y.-S.

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

S. Aravazhi, D. Geskus, K. van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Electrochem. Commun. (1)

S. Park, J. H. Park, S. Hwang, and J. Kwak, “Bench-top fabrication and electrochemical applications of a micro-gap electrode using a microbead spacer,” Electrochem. Commun. 68, 76–80 (2016).
[Crossref]

Electrochem. Solid-State Lett. (1)

S. Stanković, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-Die Adhesive Bonding Procedure for Evanescently-Coupled Photonic Devices,” Electrochem. Solid-State Lett. 14(8), H326 (2011).
[Crossref]

J. Appl. Phys. (1)

W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Opt. Express (7)

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express 18(26), 26937 (2010).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3++, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853 (2010).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994 (2010).
[Crossref]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501 (2013).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (Amsterdam, Neth.) (2)

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. (Amsterdam, Neth.) 28(4), 423–431 (2006).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb),” Opt. Mater. (Amsterdam, Neth.) 34(1), 23–26 (2011).
[Crossref]

Opt. Mater. Express (2)

Phys. Solid State (1)

I. M. Krygin, A. D. Prokhorov, V. P. D’yakonov, M. T. Borowiec, and H. Szymczak, “Spin-spin interaction of Dy3+ ions in KY(WO4)2,” Phys. Solid State 44(8), 1587–1596 (2002).
[Crossref]

Proc. SPIE (1)

C. I. van Emmerik, S. M. Martinussen, M. Dijkstra, S. M. García-Blanco, J. Mu, and R. Kooijman, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide platform,” Proc. SPIE 10535, 105350U (2017).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]

Sens. Actuators, A (1)

G. Kissinger and W. Kissinger, “Void-free silicon-wafer-bond strengthening in the 200–400 °C range,” Sens. Actuators, A 36(2), 149–156 (1993).
[Crossref]

Other (11)

T. Allenet, D. Bucci, F. Geoffray, F. Canto, L. Couston, E. Jardinier, and J.-E. Broquin, “Packaged integrated opto-fluidic solution for harmful fluid analysis,” in J.-E. Broquin and G. Nunzi Conti, eds. (International Society for Optics and Photonics, 2016), 9750, p. 975011.

Bohle, “UV-Klebstoff Verifix LV 740,” 1–2 (n.d.).

NORLAND PRODUCTS INCORPORATED, “Norland Optical Adhesive 81,” 1–2 (1966).

Epoxy Technology, “EPO-TEK 353ND,” 1–2 (2014).

Epoxy Technology, “EPO-TEK 377,” 1–2 (2015).

Dow Chemical Company, “CYCLOTENE TM 3000 Series Advanced Electronics Resins,” 1–10 (2012).

M. A. Sefunc, “New architectures for integrated optics: low-loss tight bends and on-chip high-index-contrast potassium double tungstate waveguides,” University of Twente (2016).

U. Tong and Q.-Y. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Willey & sons, inc, 1999).

SCHOTT, “MEMpax® Ultra-Thin Borosilicate Glass,” http://www.schott.com/advanced_optics/english/products/optical-materials/thin-glass/mempax/index.html .

“ThermoFisher Scientific: Typical values of Microslides (Soda Lime Glass),” 8983 (n.d.).

Schott, “MICROCROWN Microscopy Glass,” https://www.schott.com/advanced_optics/english/products/optical-materials/thin-glass/microscopy-glass-microcrown/index.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Crystalline axes (black) with structure according to I2/c space group with a* = 1.063 nm, -b* = 1.034 nm, c* = 0.755 nm, ß* = 94.3 ° and a = 0.807 nm, b = 1.034 nm, c = 0.755 nm, ß = 130.7 ° from the C2/c space group together with (a) the optical axes (blue); (b) the principle thermal axes (red) [17].
Fig. 2.
Fig. 2. Photographs of (a) three stacks consisting of KY(WO4)2 sample bonded with UV-curable adhesive onto MEMpax substrates and wax mounted on an ultra-parallel supporting glass for thinning and polishing. (b) Three stacks consisting of KY(WO4)2 samples on grinded soda-lime substrates with Newton rings, visible on the KY(WO4)2-optical flat interface, to check the planarity of the stacks.
Fig. 3.
Fig. 3. (a) Top view of an optical microscope image with a corner section of the recessed region (i.e., pool). Inside the recessed region, pillars with a diameter of 6 µm and a spacing of 500 µm are visible. (b) Schematic representation of a KY(WO4)2 sample bonded on a MEMpax glass substrate with pillars of ∼2.8 µm etched in the substrate.
Fig. 4.
Fig. 4. (a) First 20 minutes of the flip-chip bonding temperature and force profiles. The sample stays at 150 °C for 1 hour before it is cooled by natural convection. (b) Photograph of a KY(WO4)2 sample bonded on a MEMpax substrate at 150 °C, where cracks mainly occur along the a*-axis.
Fig. 5.
Fig. 5. (a) First 4 hours of bonding temperature and force profile. (b) Photograph of a KY(WO4)2 sample bonded at 250 °C to a soda-lime substrate, cracks mainly occur along the a*-axis.
Fig. 6.
Fig. 6. (a) Side view microscope image of a KY(WO4)2 sample with trenches bonded with Epotek 377 onto a soda-lime substrate where cracks originate from the top of the trench and propagate towards the top surface of the crystal, indicated with red circle. (b) Photograph in top view of a KY(WO4)2 sample with trenches bonded with BCB on soda-lime glass. The cracks propagate to the top surface and are mainly along the a*-axis.
Fig. 7.
Fig. 7. Photograph of direct bonded KY(WO4)2 onto GO14 silicate glass.

Tables (1)

Tables Icon

Table 1. Specifications of the different adhesives used.

Metrics