Abstract

Optical coronagraphy is a high contrast image technique used in astronomy to reduce light around a host star and make viable the detection of faint companions and the exploration of circumstellar disks. Digital coronagraphy consists of the digital processing of non-coronagraphic images acquired by space telescopes in order to reproduce the operation of a standard optical coronagraph. Digital coronagraphy presents significant advantages as no real coronagraph or extra device has to be manufactured and sent to space. In this paper, comparison of digital and optical coronagraph performances is accomplished both by numerical simulations that include detection noise and the use of archived images from the Hubble Space Telescope. Our analysis indicates that the attainable contrast with both techniques is comparable, though the required Lyot stop in digital coronagraphy differs from the standard one. Furthermore, the evolution of contrast as a function of the distance to the main star that we have encountered with the optical coronagraph is similar to that shown by different authors for the optical NIC2/COR coronagraph. Finally, although digital coronagraphy cannot substitute optical coronagraphs, it can be considered as an interesting tool for the analysis of actual system performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital coronagraph algorithm

Pedro J. Valle, Antonio Fuentes, Vidal F. Canales, Miguel A. Cagigas, Isidro Villo-perez, and Manuel P. Cagigal
OSA Continuum 1(2) 625-633 (2018)

Implementing focal-plane phase masks optimized for real telescope apertures with SLM-based digital adaptive coronagraphy

Jonas Kühn, Polychronis Patapis, Garreth Ruane, and Xin Lu
Opt. Express 25(14) 16686-16700 (2017)

Coronagraphs adapted to atmosphere conditions

Miguel A. Cagigas, Pedro J. Valle, and Manuel P. Cagigal
Opt. Express 20(4) 4574-4582 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
    [Crossref]
  2. M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
    [Crossref]
  3. E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
    [Crossref]
  4. J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
    [Crossref]
  5. J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
    [Crossref]
  6. J. W. Goodman, Introduction to Fourier Optics, 2ed. (McGraw-Hill, 1996).
  7. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
    [Crossref]
  8. K. Iizuka, Engineering Optics (Springer, 1987).
  9. D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
    [Crossref]
  10. B. Lyot, “The Study of the Solar Corona and Prominences without Eclipses,” Mon. Not. R. Astron. Soc. 99(8), 580–594 (1939).
    [Crossref]
  11. C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
    [Crossref]
  12. J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
    [Crossref]
  13. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
    [Crossref]
  14. G. Schneider, in S. Arribas, A. Koekemoer, and B. Whitmore, eds., p. 249 (HST Calibration Workshop Space Telescope Science Institute, 2002).
  15. G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).
  16. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
    [Crossref]
  17. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
    [Crossref]
  18. R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
    [Crossref]
  19. R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
    [Crossref]
  20. P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
    [Crossref]

2018 (2)

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
[Crossref]

2015 (1)

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

2014 (1)

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

2013 (1)

2012 (1)

R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

2010 (1)

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref]

2007 (4)

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

2006 (2)

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

2001 (1)

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

1990 (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

1939 (1)

B. Lyot, “The Study of the Solar Corona and Prominences without Eclipses,” Mon. Not. R. Astron. Soc. 99(8), 580–594 (1939).
[Crossref]

Aime, C.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Artigau, E.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

Berkefeld, T.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Burruss, R.

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref]

Cagigal, M. P.

P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
[Crossref]

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref]

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

Cagigas, M. A.

P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
[Crossref]

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref]

Canales, V. F.

P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
[Crossref]

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

Chen, C.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Choquet, E.

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Collins, B.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Crepp, J. R.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Dashevsky, I.

G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).

Debes, J.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Doyon, R.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Femenía, B.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Ferrari, A.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Fuentes A, A.

Ge, J.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Gofas-Salas, E.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Golimowski, D.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2ed. (McGraw-Hill, 1996).

Guyon, O.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Hagan, J. B.

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Hines, D. C.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Iizuka, K.

K. Iizuka, Engineering Optics (Springer, 1987).

Jolissaint, L.

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Koresko, C. D.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Kuchner, M. J.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Lafreniere, D.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

Lafrenière, D.

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Larkin, J.

R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

López, R.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Lyot, B.

B. Lyot, “The Study of the Solar Corona and Prominences without Eclipses,” Mon. Not. R. Astron. Soc. 99(8), 580–594 (1939).
[Crossref]

Macintosh, B.

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Makidon, R. B.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Malhotra, S.

G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).

Marois, C.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Mawet, D.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref]

N’Diaye, M.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Nadeau, D.

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

Oscoz, A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Oti, J. E.

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

Pérez-Garrido, A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Pérez-Prieto, J. A.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Perrin, M. D.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Pluzhnik, E. A.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Prieto-Blanco, X.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Pueyo, L.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

Rajan, A.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Rebolo, R.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Ridgway, S. T.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Rodríguez, L. F.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Schneider, G.

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

G. Schneider, in S. Arribas, A. Koekemoer, and B. Whitmore, eds., p. 249 (HST Calibration Workshop Space Telescope Science Institute, 2002).

G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).

Schultz, A.B.

G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).

Serabyn, E.

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref]

Sivaramakrishnan, A.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Soummer, R.

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

Valle, P. J.

P. J. Valle, A. Fuentes A, V. F. Canales, M. A. Cagigas, I. Villo-Perez, and M. P. Cagigal, “Digital coronagraph algorithm,” OSA Continuum 1(2), 625–633 (2018).
[Crossref]

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging,” Opt. Express 21(10), 12744–12756 (2013).
[Crossref]

Van den Heuvel, A. D.

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

Vigan, A.

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

Villo-Perez, I.

Villo-Pérez, I.

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Astrophys. J. (8)

J. B. Hagan, E. Choquet, R. Soummer, and A. Vigan, “ALICE Data Release: A Revaluation of HST-NICMOS Coronagraphic Images,” Astrophys. J. 155(4), 179 (2018).
[Crossref]

J. R. Crepp, A. D. Van den Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J. 661(2), 1323–1331 (2007).
[Crossref]

D. Lafreniere, C. Marois, R. Doyon, D. Nadeau, and E. Artigau, “A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging,” Astrophys. J. 660(1), 770–780 (2007).
[Crossref]

C. Marois, D. Lafrenière, R. Doyon, B. Macintosh, and D. Nadeau, “Angular differential imaging: a powerful high-contrast imaging technique,” Astrophys. J. 641(1), 556–564 (2006).
[Crossref]

J. E. Oti, V. F. Canales, and M. P. Cagigal, “Pure amplitude masks for exoplanet detection with the optical differentiation coronagraph,” Astrophys. J. 662(1), 738–743 (2007).
[Crossref]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669(1), 642–656 (2007).
[Crossref]

R. Soummer, L. Pueyo, and J. Larkin, “Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages,” Astrophys. J. 755(2), L28 (2012).
[Crossref]

Astrophys. J., Suppl. Ser. (1)

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J., Suppl. Ser. 167(1), 81–99 (2006).
[Crossref]

Mon. Not. R. Astron. Soc. (2)

B. Lyot, “The Study of the Solar Corona and Prominences without Eclipses,” Mon. Not. R. Astron. Soc. 99(8), 580–594 (1939).
[Crossref]

M. A. Cagigas, P. J. Valle, M. P. Cagigal, X. Prieto-Blanco, A. Pérez-Garrido, I. Villo-Pérez, B. Femenía, J. A. Pérez-Prieto, L. F. Rodríguez, R. López, A. Oscoz, and R. Rebolo, “Experimental validation of Lyot stop apodization in ground-based coronagraphy,” Mon. Not. R. Astron. Soc. 446(1), 627–632 (2015).
[Crossref]

Nature (1)

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[Crossref]

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Opt. Express (1)

OSA Continuum (1)

Proc. SPIE (1)

E. Choquet, L. Pueyo, J. B. Hagan, E. Gofas-Salas, A. Rajan, C. Chen, M. D. Perrin, J. Debes, D. Golimowski, D. C. Hines, M. N’Diaye, G. Schneider, D. Mawet, C. Marois, and R. Soummer, “Archival legacy investigations of circumstellar environments: overview and first results,” Proc. SPIE 9143, 914357 (2014).
[Crossref]

Other (4)

J. W. Goodman, Introduction to Fourier Optics, 2ed. (McGraw-Hill, 1996).

K. Iizuka, Engineering Optics (Springer, 1987).

G. Schneider, in S. Arribas, A. Koekemoer, and B. Whitmore, eds., p. 249 (HST Calibration Workshop Space Telescope Science Institute, 2002).

G. Schneider, A.B. Schultz, S. Malhotra, and I. Dashevsky, in Instrument Science Report NICMOS 2005-001, Space telescope Institute, NASA (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Standard optical coronagraph. a: entrance pupil plane, b: coronagraphic plane, c: Lyot stop plane, d: detection plane.
Fig. 2.
Fig. 2. One-dimensional summary of profiles at the same planes of Fig. 1 for the optical coronagraph (left) and comparison with the digital coronagraph (right). Note that b0 represents the intensity, bS the sign map and b1 the mask at the coronagraphic plane, and c1 the Lyot stop.
Fig. 3.
Fig. 3. Binary sign map given by Eq. (2) for a pupil without central obscuration (left) and with central obscuration (right). Value + 1 is represented by white regions while value -1 by black ones.
Fig. 4.
Fig. 4. Outline of the dissimilar spatial spread of both contributions at the Lyot plane, a: star, b: companion. The companion is 100 times fainter than the host star and is placed at 13 λ/D.
Fig. 5.
Fig. 5. Representation of super-Gaussian Lyot stops (red) and annular pupil (green). (a) the inner Lyot stop is inside the annular pupil, (b) the outer Lyot stop is outside the pupil area.
Fig. 6.
Fig. 6. Contrast curves for the OC (red line) calculated according to Eq. (4) and for the DCA calculated using Eq. (5) with an inner Lyot stop (green line) and with an outer Lyot stop (blue line). Direct star intensity (without coronographic mask) is also shown (black line).
Fig. 7.
Fig. 7. Noise standard deviation for the OC (red line) and for the DCA with inner Lyot stop (green line) and outer Lyot stop (blue line). Direct intensity star standard deviation is also shown (black line)
Fig. 8.
Fig. 8. Contrast curves for the DCA calculated using an outer Lyot stop for wavefronts providing SR = 1 (blue line), SR = 0.95 (brown line), SR = 0.90 (green line) and SR = 0.80 (red line)
Fig. 9.
Fig. 9. Coronagraphic rejection factor for star GJ517 for the optical coronagraph NIC2/COR (red line, Schneider) and DCA (green line).
Fig. 10.
Fig. 10. Contrast curves of star BRI-0021. Dashed-lines are direct non-coronagraphic images and solid-lines are DCA results. NIC1 and NIC2 camera images are green and red lines, respectively.
Fig. 11.
Fig. 11. 3 -σ contrast curves of star BRI-0021. Dashed-lines are direct non-coronagraphic images and solid-lines are DCA results. NIC1 and NIC2 camera images are green and red lines, respectively).
Fig. 12.
Fig. 12. Optical NIC2/COR (left) and digital DCA (right) coronagraphic images of star GJ517

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A ( r ) I ( r ) S ( r )
S ( r ) = A P S F ( r ) | A P S F ( r ) |
A ( r ) I S ( r ) S ( r ) + I C ( r r 0 ) S ( r ) 2 I S ( r )
C ( r ) = I ( r ) | M ( r ) | 2 I S ( 0 )
C ( r ) = I ( r ) | M ( r ) | 2 I C ( r )
S G ( r , n ) = e x p ( | r r 0 σ | 2 n )
I S = | A e i ϕ ¯ | 2 | A | ¯ 2 + | A ϕ | ¯ 2 2 | A | ¯ Im ( A ϕ ) ¯
I D C A = | | A e i ϕ ¯ | S M ¯ L ¯ | 2
I D C A | A ¯ M L ¯ | 2 + | Im ( A ϕ ) ¯ M L ¯ | 2 2 ( A ¯ M L ¯ ) ( Im ( A ϕ ) ¯ M L ¯ )
C σ ( r ) = n σ ( r ) | M ( r ) | 2 I S ( 0 )

Metrics