Abstract

Elimination of virus-carrying insects, such as mosquitoes, by an efficient method is of primary importance to preventing the dissemination of infectious diseases and consequentially reducing the health and financial burden on human society. Research herein entails the design, characterization, and implementation of a structurally simple and cost-effective electro-optical system for mosquito-hunting, which is optimized with a system response time under 1.25 ms considering the average mosquito flight speed of 0.2777 m/s, capable of locating the free-flight adult mosquito and knocking it down, synchronously, without any post data-processing. Empirically, the visible-near-infrared absorption spectra of three mosquito species, namely, Culex piplens molestus, Aedes albopictus, and Armigeres subalbatus, were acquired to examine the disparity in photo-absorption property among different mosquito species and help determine an optimal wavelength for injuring the insects. Armigeres subalbatus, a natural transmission vector of filariasis to humans, was employed for the evaluation of the system's efficacy. By introducing a free-flight mosquito about 20 cm in front of an dichroic mirror that combines two optical beams for detection and eradication, a dynamically tracking photonic antenna with a maximal area of 45 mm by 39 mm can continuously track the insect and then knock it down by an instant exposure of a lethal beam with average energy ranging from 75 mJ to 155 mJ. Moreover, the dependence of the fate of the insects on the lethal beam energy dosage is statistically assessed. Overall, this research has successfully demonstrated the concept of the synchronizing scheme of identification and eradication with over 60% of mortality rate once the energy dosage is increased above 75mJ, and may be applicable to the control of other insects or avian animals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects

Martin Jan Tauc, Kurt M. Fristrup, Kevin S. Repasky, and Joseph A Shaw
OSA Continuum 2(2) 332-348 (2019)

Development of a low-cost imaging system for remote mosquito surveillance

Adam Goodwin, Margaret Glancey, Tristan Ford, Laura Scavo, Jewell Brey, Collyn Heier, Nicholas J. Durr, and Soumyadipta Acharya
Biomed. Opt. Express 11(5) 2560-2569 (2020)

Laser system for identification, tracking, and control of flying insects

Emma R. Mullen, Phillip Rutschman, Nathan Pegram, Joseph M. Patt, John J. Adamczyk, and 3ric Johanson
Opt. Express 24(11) 11828-11838 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Sharma and S. K. Lal, “Zika Virus: transmission, detection, control, and prevention,” Front. Microbiol. 8, 110 (2017).
    [Crossref]
  2. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
    [Crossref]
  3. B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
    [Crossref]
  4. H. Caraballo and K. King, “Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus,” Emerg. Med. Pract. 16(5), 1–23 (2014).
  5. World Health Organization (WHO) world maliaria report 2018.
  6. J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
    [Crossref]
  7. N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).
  8. R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
    [Crossref]
  9. A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
    [Crossref]
  10. Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
    [Crossref]
  11. J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annu. Rev. Entomol. 45(1), 371–391 (2000).
    [Crossref]
  12. C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
    [Crossref]
  13. B. Giovanni, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer- a brief review,” Enzyme Microb. Technol. 95, 58–68 (2016).
    [Crossref]
  14. M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
    [Crossref]
  15. E. R. Mullen, P. Rutschman, N. Pegram, J. M. Patt, J. J. Adamczyk, and E. Johanson, “Laser system for identification, tracking, and control of flying insects,” Opt. Express 24(11), 11828–11838 (2016).
    [Crossref]
  16. J. Vanderberg, “Imaging mosquito transmission of Plasmodium soprozoites into the mammalian host: immunological implications,” Parasitol. Int. 63(1), 150–164 (2014).
    [Crossref]
  17. Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
    [Crossref]
  18. R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
    [Crossref]
  19. F. Hawkes and G. Gibson, “Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby,” Parasites Vectors 9(1), 320 (2016).
    [Crossref]
  20. J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
    [Crossref]
  21. C. Kaufmann and H. Briegel, “Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus,” J. Vector Ecol. 29(1), 140–153 (2004).
    [Crossref]
  22. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

2017 (5)

A. Sharma and S. K. Lal, “Zika Virus: transmission, detection, control, and prevention,” Front. Microbiol. 8, 110 (2017).
[Crossref]

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

2016 (5)

F. Hawkes and G. Gibson, “Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby,” Parasites Vectors 9(1), 320 (2016).
[Crossref]

B. Giovanni, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer- a brief review,” Enzyme Microb. Technol. 95, 58–68 (2016).
[Crossref]

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

E. R. Mullen, P. Rutschman, N. Pegram, J. M. Patt, J. J. Adamczyk, and E. Johanson, “Laser system for identification, tracking, and control of flying insects,” Opt. Express 24(11), 11828–11838 (2016).
[Crossref]

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

2015 (1)

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

2014 (4)

J. Vanderberg, “Imaging mosquito transmission of Plasmodium soprozoites into the mammalian host: immunological implications,” Parasitol. Int. 63(1), 150–164 (2014).
[Crossref]

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

H. Caraballo and K. King, “Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus,” Emerg. Med. Pract. 16(5), 1–23 (2014).

C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
[Crossref]

2011 (2)

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

2005 (1)

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

2004 (1)

C. Kaufmann and H. Briegel, “Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus,” J. Vector Ecol. 29(1), 140–153 (2004).
[Crossref]

2000 (1)

J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annu. Rev. Entomol. 45(1), 371–391 (2000).
[Crossref]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

Abe, M.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Adamczyk, J. J.

Ali, A.

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

Angarita-Jaimes, N.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Bedi, N.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Benedict, M. Q.

C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
[Crossref]

Bensenor, I. M.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Bomphrey, R.

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

Bourtzis, K.

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

Brady, O. J.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Briegel, H.

C. Kaufmann and H. Briegel, “Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus,” J. Vector Ecol. 29(1), 140–153 (2004).
[Crossref]

Campbell, S. R.

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Caraballo, H.

H. Caraballo and K. King, “Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus,” Emerg. Med. Pract. 16(5), 1–23 (2014).

Castaneda-Orjuela, C. A.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Chen, Y. C.

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

Chuang, T. W.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Coffeng, L. E.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Damiens, D.

C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
[Crossref]

DeFelice, N. B.

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Gama, R. A.

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Gibney, K. B.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Gibson, G.

F. Hawkes and G. Gibson, “Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby,” Parasites Vectors 9(1), 320 (2016).
[Crossref]

Gilles, J. R. L.

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

Giovanni, B.

B. Giovanni, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer- a brief review,” Enzyme Microb. Technol. 95, 58–68 (2016).
[Crossref]

Gobert, G. N.

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Guerra, C. A.

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

Halasa, Y. A.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Han, M.

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Hawkes, F.

F. Hawkes and G. Gibson, “Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby,” Parasites Vectors 9(1), 320 (2016).
[Crossref]

Hay, S. I.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

Hemingway, J.

J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annu. Rev. Entomol. 45(1), 371–391 (2000).
[Crossref]

Hendrichs, J.

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

Hong, Y. S.

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Idrees, M.

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

Johanson, E.

E. R. Mullen, P. Rutschman, N. Pegram, J. M. Patt, J. J. Adamczyk, and E. Johanson, “Laser system for identification, tracking, and control of flying insects,” Opt. Express 24(11), 11828–11838 (2016).
[Crossref]

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Jones, M. K.

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Kang, S.

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Kaufmann, C.

C. Kaufmann and H. Briegel, “Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus,” J. Vector Ecol. 29(1), 140–153 (2004).
[Crossref]

Keller, M. D.

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

King, K.

H. Caraballo and K. King, “Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus,” Emerg. Med. Pract. 16(5), 1–23 (2014).

Lal, S. K.

A. Sharma and S. K. Lal, “Zika Virus: transmission, detection, control, and prevention,” Front. Microbiol. 8, 110 (2017).
[Crossref]

Leahy, D. J.

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Lee, H. Y.

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

Lees, R. S.

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

Little, E.

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Liu, Y. J.

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

Liu, Y. N.

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

Lopes, N. P.

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Ma, H. Y.

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

Makagon, A.

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Marvit, M.

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

McCall, P. J.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Memish, Z. A.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Mullen, E. R.

E. R. Mullen, P. Rutschman, N. Pegram, J. M. Patt, J. J. Adamczyk, and E. Johanson, “Laser system for identification, tracking, and control of flying insects,” Opt. Express 24(11), 11828–11838 (2016).
[Crossref]

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Murray, C. J. L.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Myint, H. Y.

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

Nakata, T.

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

Neto, V. F.

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Noor, A. M.

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

Norton, B. J.

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Oliva, C. F.

C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
[Crossref]

Parker, J. E. A.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Patt, J. M.

Pegram, N.

Phillips, N.

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

Pohlit, A. M.

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

Rafay, A.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Rafique, S.

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

Ranson, H.

J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annu. Rev. Entomol. 45(1), 371–391 (2000).
[Crossref]

Rutschman, P.

Shaman, J.

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Sharma, A.

A. Sharma and S. K. Lal, “Zika Virus: transmission, detection, control, and prevention,” Front. Microbiol. 8, 110 (2017).
[Crossref]

Shepard, D. S.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Snow, R. W.

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

Stanaway, J. D.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Tadei, W. P.

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Towers, C. E.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Towers, D.

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

Ukwaja, K. N.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Undurraga, E. A.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Vanderberg, J.

J. Vanderberg, “Imaging mosquito transmission of Plasmodium soprozoites into the mammalian host: immunological implications,” Parasitol. Int. 63(1), 150–164 (2014).
[Crossref]

Vreysen, M. J. B.

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

Wahid, B.

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

Walker, S. M.

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

Yonemoto, N.

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Acta Trop. (2)

R. S. Lees, J. R. L. Gilles, J. Hendrichs, M. J. B. Vreysen, and K. Bourtzis, “Review: improving our knowledge of male mosquito biology in relation to genetic control programmes,” Acta Trop. 132, S2–S11 (2014).
[Crossref]

C. F. Oliva, D. Damiens, and M. Q. Benedict, “Male reproductive biology of Aedes mosquitos,” Acta Trop. 132, S12–S19 (2014).
[Crossref]

Annu. Rev. Entomol. (1)

J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annu. Rev. Entomol. 45(1), 371–391 (2000).
[Crossref]

Emerg. Med. Pract. (1)

H. Caraballo and K. King, “Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus,” Emerg. Med. Pract. 16(5), 1–23 (2014).

Enzyme Microb. Technol. (1)

B. Giovanni, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer- a brief review,” Enzyme Microb. Technol. 95, 58–68 (2016).
[Crossref]

Front. Microbiol. (1)

A. Sharma and S. K. Lal, “Zika Virus: transmission, detection, control, and prevention,” Front. Microbiol. 8, 110 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).

Int. J. Infect. Dis. (1)

B. Wahid, A. Ali, S. Rafique, and M. Idrees, “Global expansion of chikungunya virus: mapping the 64-year history,” Int. J. Infect. Dis. 58, 69–76 (2017).
[Crossref]

J. Vector Ecol. (1)

C. Kaufmann and H. Briegel, “Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus,” J. Vector Ecol. 29(1), 140–153 (2004).
[Crossref]

Lancet Infect. Dis. (1)

J. D. Stanaway, D. S. Shepard, E. A. Undurraga, Y. A. Halasa, L. E. Coffeng, O. J. Brady, S. I. Hay, N. Bedi, I. M. Bensenor, C. A. Castaneda-Orjuela, T. W. Chuang, K. B. Gibney, Z. A. Memish, A. Rafay, K. N. Ukwaja, N. Yonemoto, and C. J. L. Murray, “The global burden of dengue: an analysis from the global burden of disease study 2013,” Lancet Infect. Dis. 16(6), 712–723 (2016).
[Crossref]

Nat. Commun. (1)

N. B. DeFelice, E. Little, S. R. Campbell, and J. Shaman, “Ensemble forcast of human West Nile virus cases and mosquito infection rates,” Nat. Commun. 8(1), 14592 (2017).

Nature (2)

R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of plasmodium falciparum malaria,”,” Nature 434(7030), 214–217 (2005).
[Crossref]

R. Bomphrey, T. Nakata, N. Phillips, and S. M. Walker, “Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight,” Nature 544(7648), 92–95 (2017).
[Crossref]

Opt. Express (1)

Parasites Vectors (2)

F. Hawkes and G. Gibson, “Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby,” Parasites Vectors 9(1), 320 (2016).
[Crossref]

Y. S. Hong, S. Kang, M. Han, G. N. Gobert, and M. K. Jones, “High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy,” Parasites Vectors 4(1), 83 (2011).
[Crossref]

Parasitol. Int. (1)

J. Vanderberg, “Imaging mosquito transmission of Plasmodium soprozoites into the mammalian host: immunological implications,” Parasitol. Int. 63(1), 150–164 (2014).
[Crossref]

Planta Med. (1)

A. M. Pohlit, N. P. Lopes, R. A. Gama, W. P. Tadei, and V. F. Neto, “Patent literature on mosquito repellent inventions which contain plant essential oils-A Review,” Planta Med. 77(06), 598–617 (2011).
[Crossref]

Sci. Rep. (3)

Y. N. Liu, Y. J. Liu, Y. C. Chen, H. Y. Ma, and H. Y. Lee, “Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes,” Sci. Rep. 7(1), 40074 (2017).
[Crossref]

J. E. A. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. McCall, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localized net contact,” Sci. Rep. 5(1), 13392 (2015).
[Crossref]

M. D. Keller, D. J. Leahy, B. J. Norton, E. Johanson, E. R. Mullen, M. Marvit, and A. Makagon, “Laser induced mortality of Anopheles stephensi mosquitoes,” Sci. Rep. 6(1), 20936 (2016).
[Crossref]

Other (1)

World Health Organization (WHO) world maliaria report 2018.

Supplementary Material (1)

NameDescription
» Visualization 1       The movie file to dynamically tracking and shooting an Armigeres Subalbatus

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. System-level diagram of MHEOS. This system is comprised of a dynamic mosquito tracking and a lethal optical beam illumination systems presented in red and blue beam path, respectively, which is synchronized by a central signal processing electronic circuit. MRS, PIS, LBS, stand for mosquito-borne reflection, position identification and lethal beam signals, correspondingly, and SPU, GS, PD, BPF, BS, L are the respective abbreviation of system components for signal processing unit, galvo-scanner, photo-diode, band-pass filter, beam splitter and focusing lens.
Fig. 2.
Fig. 2. Absorbance spectra of an array of mosquito species, Armigeres subalbatus, Aedes alboppictus and Culex pipiens molestus, ranging from 400 nm to 1000 nm, are presented.The inset shows the photo of the sample, a mosquito-filled cuvette, for absorbance measurement.
Fig. 3.
Fig. 3. Flow chart of SPU circuitry. MRS in pseudo-color green from the detector is amplified, and activates the logic switch, allowing PIS of the instant moment, in pseudo-color red, to be transferred to the lethal beam unit that sends out LBS, in pseudo-color blue, to positioning the mirrors of GS-B.
Fig. 4.
Fig. 4. System time-response measurement. The time traces of the responses between (a) activation of GS to detection of PD, (b) input and output of pre-stage amplifier, (c) amplified MIS and amplified LBS, and (d) blocks of system time responses are presented.
Fig. 5.
Fig. 5. Dynamically tracking an Armigeres Subalbatus. Laser beam points out the free-flight path of the insect in a sequence of images (a-d) acquired in an increment of 41 ms; the average energy is 155 mJ. Visualization 1 shows a complete video of the whole detection and shooting process.
Fig. 6.
Fig. 6. Brightfield images of Armigeres Subalbatus acquired after the exposure of the lethal beam. Overall fate of the mosquitoes can be categorized into (a) survival with flight ability, (b) slight impairment of flight ability, and deprived flight ability, (c) without and (d) with apparent wounded body parts. Laser energy of 40 mJ, and 155 mJ were used to assess the mosquitoes shown in (a) and (b), (c) and (d), correspondingly; a red arrow indicates the site of broken wing.
Fig. 7.
Fig. 7. Energy dependence study. Fatality rate of Armigeres Subalbatus illuminated by an array of energy-dosage, 40 mJ, 75 mJ, 110 mJ and 155 mJ is presented.

Metrics