Abstract

Broadband tunable ultrafast lasers using mid-infrared (MIR) fibers operating at a 3-5 µm atmospheric transmission window are attractive sources because of their numerous applications. Tellurite fibers possess the merits of large linear and nonlinear refractive indices, sufficient chemical stability, and wide transparency range up to ∼5 µm; also, they are highly suitable for high efficiency MIR ultrafast fiber laser sources based on soliton self-frequency shift (SSFS). We numerically simulate SSFS of MIR femtosecond pulses in step-index tellurite optical fibers. A femtosecond erbium-doped fluoride fiber laser at 3.5 µm is employed as the pump source. Parameters including the peak power of the input pulse and nonlinear fiber length are optimized for high efficiency broadband tunable MIR ultrafast laser performance. Our results show that a high-efficiency 3.5-6 µm wavelength-tunable femtosecond laser can be realized by employing SSFS in a 22-cm-long segment of tellurite step-index fiber pumped by femtosecond pulses with 10-300 kW peak powers at 3.5 µm. Ultra-high energy ratios of the most redshifted solitons to the input pulses of >50% are obtained across the 3.5-5 µm tuning range. The presented numerical study provides valuable guidance for SSFS of MIR femtosecond pulses in step-index tellurite fibers and is valuable for future high efficiency wavelength-tunable MIR ultrafast fiber laser development.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3  μm in robust step-index tellurite fibers

Stefan Kedenburg, Clément Strutynski, Bertrand Kibler, Paul Froidevaux, Frédéric Désévédavy, Grégory Gadret, Jean-Charles Jules, Tobias Steinle, Florian Mörz, Andy Steinmann, Harald Giessen, and Frederic Smektala
J. Opt. Soc. Am. B 34(3) 601-607 (2017)

Broadband high-power mid-IR supercontinuum generation in tapered chalcogenide step-index optical fiber

Than Singh Saini, Hoa Phuoc Trung Nguyen, Xing Luo, Tong Hoang Tuan, Takenobu Suzuki, and Yasutake Ohishi
OSA Continuum 2(5) 1652-1666 (2019)

Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling

Than Singh Saini, Nguyen Phuoc Trung Hoa, Tong Hoang Tuan, Xing Luo, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 58(2) 415-421 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3-5 µm atmospheric window,” Remote Sens. Environ 47(3), 345–361 (1994).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  3. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  4. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
    [Crossref]
  5. C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
    [Crossref]
  6. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [Crossref]
  7. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
    [Crossref]
  8. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
    [Crossref]
  9. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
    [Crossref]
  10. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm,” Opt. Lett. 37(18), 3849–3851 (2012).
    [Crossref]
  11. A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallee, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 µm Er3+:fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
    [Crossref]
  12. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
    [Crossref]
  13. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
    [Crossref]
  14. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref]
  15. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref]
  16. C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
    [Crossref]
  17. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piche, and R. Vallee, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
    [Crossref]
  18. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
    [Crossref]
  19. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
    [Crossref]
  20. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
    [Crossref]
  21. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
    [Crossref]
  22. S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallee, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294–5297 (2016).
    [Crossref]
  23. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  24. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref]
  25. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
    [Crossref]
  26. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref]
  27. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber,” Optica 3(9), 948–951 (2016).
    [Crossref]
  28. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  29. S. Duval, M. Olivier, L. R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er3+: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450–1462 (2018).
    [Crossref]
  30. X. Yan, C. Kito, S. Miyoshi, M. Liao, T. Suzuki, and Y. Ohishi, “Raman transient response and enhanced soliton self-frequency shift in ZBLAN fiber,” J. Opt. Soc. Am. B 29(2), 238–243 (2012).
    [Crossref]
  31. T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
    [Crossref]
  32. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  33. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
    [Crossref]
  34. M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40(17), 4094–4097 (2015).
    [Crossref]
  35. J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16213 (2007).
    [Crossref]
  36. J. M. Dudley and J. R. Taylor, Eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).
  37. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber,” J. Opt. Soc. Am. B 28(8), 1831–1836 (2011).
    [Crossref]
  38. G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
    [Crossref]
  39. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm,” Opt. Express 21(24), 29488–29504 (2013).
    [Crossref]
  40. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [Crossref]
  41. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  42. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

2018 (2)

2017 (3)

2016 (6)

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber,” Optica 3(9), 948–951 (2016).
[Crossref]

S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallee, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294–5297 (2016).
[Crossref]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

2015 (5)

2014 (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallee, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 µm Er3+:fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (2)

2010 (3)

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
[Crossref]

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
[Crossref]

2009 (3)

2008 (1)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

2007 (1)

2006 (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

1995 (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

1994 (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3-5 µm atmospheric window,” Remote Sens. Environ 47(3), 345–361 (1994).
[Crossref]

1986 (2)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adler, F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Anashkina, E. A.

Andrianov, A. V.

Antipov, S.

Asano, K.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

Briles, T. C.

Cankaya, H.

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Charan, K.

Chaudhari, C.

Chen, Q.

Cheng, T.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Cizmeciyan, M. N.

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cossel, K. C.

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

D’Aria, D. M.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3-5 µm atmospheric window,” Remote Sens. Environ 47(3), 345–361 (1994).
[Crossref]

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Deng, D.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Dorofeev, V. V.

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duval, S.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Foltynowicz, A.

Fortin, V.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gaeta, A. L.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Gauthier, J.

Genest, J.

Geng, L.

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosh, G.

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

Gordon, J. P.

Griffith, A. G.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Haboucha, A.

Hai, T.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartl, I.

Hu, T.

Hudson, D. D.

Jackson, S. D.

Kanou, Y.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Kim, A. V.

Kito, C.

Koptev, M. Y.

Kosolapov, A. F.

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kurt, A.

Lægsgaard, J.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Lee, J. H.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Li, J.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

Li, L.

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Liao, M.

Lipson, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Liu, X.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

Liu, Y.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Luo, H.

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Lyu, Y.

Ma, J.

Manzur, T.

Maslowski, P.

Matsumoto, M.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Messaddeq, Y.

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Misumi, T.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Mitschke, F. M.

Miyoshi, S.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Mollenauer, L. F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Muravyev, S. V.

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Norwood, R. A.

Ohishi, Y.

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Olivier, M.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Paradis, P.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Piche, M.

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Qian, L.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Qin, G.

Qin, Z.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Robichaud, L.

Robichaud, L. R.

Sahay, P.

C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

Salisbury, J. W.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3-5 µm atmospheric window,” Remote Sens. Environ 47(3), 345–361 (1994).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sennaroglu, A.

Shen, D.

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Shi, H.

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Song, F.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Suzuki, T.

Tang, Y.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).

Vallee, R.

Vallée, R.

van Howe, J.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, C.

C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wang, T.

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wei, C.

Wen, S.

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Wise, F. W.

Woodward, R. I.

Wright, L. G.

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Xie, G.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Xu, C.

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber,” Optica 3(9), 948–951 (2016).
[Crossref]

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Yan, X.

Ye, J.

Yu, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Yuan, P.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Zhang, H.

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhao, C.

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

Zhao, L.

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, G.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref]

Zhu, X.

Adv. OptoElectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
[Crossref]

Appl. Phys. Lett. (1)

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

IEEE J. Sel. Topics Quantum Electron (1)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton Self-Frequency Shift: Experimental Demonstrations and Applications,” IEEE J. Sel. Topics Quantum Electron 14(3), 713–723 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 µm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6(1), 6299 (2015).
[Crossref]

Nat. Photonics (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (8)

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Express 41(1), 56–59 (2016).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm,” Opt. Express 21(24), 29488–29504 (2013).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref]

J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16213 (2007).
[Crossref]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
[Crossref]

Opt. Lett. (10)

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
[Crossref]

S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallee, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294–5297 (2016).
[Crossref]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
[Crossref]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm,” Opt. Lett. 37(18), 3849–3851 (2012).
[Crossref]

M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40(17), 4094–4097 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallee, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 µm Er3+:fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
[Crossref]

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Optica (3)

PLoS ONE (1)

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE 5(9), e13053 (2010).
[Crossref]

Remote Sens. Environ (1)

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3-5 µm atmospheric window,” Remote Sens. Environ 47(3), 345–361 (1994).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Sensors (1)

C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

J. M. Dudley and J. R. Taylor, Eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Optical properties of the TBZN step-index fiber. (a) Dispersion and loss versus wavelength. (b) Effective area and nonlinear coefficient versus wavelength.
Fig. 2.
Fig. 2. Spectral evolution of fundamental soliton in 10 m TBZN step-index fiber (peak power of the input pulses: 10 kW).
Fig. 3.
Fig. 3. Wavelength of the most redshifted soliton in the TBZN fiber versus the propagation distance.
Fig. 4.
Fig. 4. When 10 m TBZN step-index fiber is pumped by pulses with 40 kW peak power. (a) Peak power and FWHM of the most redshifted soliton with respect to the propagation distance. (b) Spectra and (c) time domain profiles at different distance.
Fig. 5.
Fig. 5. Energy transfer efficiency at 5 µm (the ratio of the energy of the most redshifted soliton at 5 µm to the input energy) and corresponding fiber length as a function of the peak power of the input pulses.
Fig. 6.
Fig. 6. When 22 cm TBZN step-index fiber is pumped at 3.5 µm. (a) Wavelengths of the most redshifted solitons versus input pulses peak power. (b) Energies and FWHMs of the most redshifted solitons at various soliton center wavelengths. (c) Energy ratios of the most redshifted soliton to the input pulse at various wavelengths.
Fig. 7.
Fig. 7. When 22 cm TBZN step-index fiber is pumped at 3.5 µm with pulses with 120 kW peak power. (a) Spectral output. (b) Spectral evolution along the fiber. (c) Temporal output. (d) Temporal evolution along the fiber.
Fig. 8.
Fig. 8. Spectral output of 22 cm TBZN step-index fiber when pumped by pulses with 11.6 nJ pulse energy and 300 kW peak power at 3.5 µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ~ z = i γ ¯ ( ω ) exp ( L ^ ( ω ) z ) F { A ¯ ( z , T ) + R ( T ) × | A ¯ ( z , T T ) | 2 d T } ,
L ^ ( ω ) = i ( β ( ω ) β ( ω 0 ) β 1 ( ω 0 ) [ ω ω 0 ] ) α ( ω ) 2 ,
γ ¯ ( ω ) = n 2 n 0 ω c n eff ( ω ) A eff 1 / 4 ( ω ) ,
γ ( λ ) = 2 π n 2 λ A eff ( λ ) ,
A ¯ ( z , T ) = F 1 { A ~ ( z , ω ) A eff 1 / 4 ( ω ) } ,
A eff ( ω ) = ( + | F ( x , y , ω ) | 2 d x d y ) 2 + | F ( x , y , ω ) | 4 d x d y ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
A ~ ( z , ω ) = A ~ ( z , ω ) exp ( L ^ ( ω ) z ) ,
n 2 = A + B 1 C / λ 2 + D 1 E / λ 2 .
D = λ c d 2 n 2 d λ 2 .
h R ( t ) = i = 1 N A i exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) sin ( ω v , i t ) ,
N 2 = γ P 0 T 0 2 | β 2 | ,

Metrics