Abstract

In this study, we demonstrate enhancement of the spatial resolution in digital holographic microscopy (DHM) using the spatial correlation properties of speckle patterns. In this method, the spatial correlation coefficients of speckle intensity are controlled by illuminating a diffuser, such as a ground glass plate, with an illumination spot with intensity profiles of a ring shape produced by an amplitude-modulated aperture. These speckle patterns are incident on an object to achieve a higher numerical aperture of the illumination system in DHM. The theoretical predictions and experimental results show that higher spatial resolution in DHM can be realized by adjusting the spatial correlation properties of speckle patterns.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens

Robin Schubert, Angelika Vollmer, Steffi Ketelhut, and Björn Kemper
Biomed. Opt. Express 5(12) 4213-4222 (2014)

Digital holographic microscopy with phase-shift-free structured illumination

Juanjuan Zheng, Peng Gao, Baoli Yao, Tong Ye, Ming Lei, Junwei Min, Dan Dan, Yanlong Yang, and Shaohui Yan
Photon. Res. 2(3) 87-91 (2014)

Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination

Shaohui Li, Jun Ma, Chenliang Chang, Shouping Nie, Shaotong Feng, and Caojin Yuan
Opt. Express 26(18) 23572-23584 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [Crossref]
  2. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  3. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
  4. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [Crossref]
  5. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref]
  6. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref]
  7. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [Crossref]
  8. I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
    [Crossref]
  9. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3d tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
    [Crossref]
  10. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
    [Crossref]
  11. J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
    [Crossref]
  12. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12(10), 578–589 (2018).
    [Crossref]
  13. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
    [Crossref]
  14. F. L. Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26(20), 1550–1552 (2001).
    [Crossref]
  15. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
    [Crossref]
  16. J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
    [Crossref]
  17. V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
    [Crossref]
  18. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [Crossref]
  19. J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
    [Crossref]
  20. H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
    [Crossref]
  21. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2006).
  22. J. Turunen, A. Vasara, and A. T. Friberg, “Propagation invariance and self-imaging in variable-coherence optics,” J. Opt. Soc. Am. A 8(2), 282–289 (1991).
    [Crossref]
  23. K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
    [Crossref]
  24. J. Uozumi, M. Ibrahim, and T. Asakura, “Fractal speckles,” Opt. Commun. 156(4-6), 350–358 (1998).
    [Crossref]
  25. H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422 (2007).
    [Crossref]
  26. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref]
  27. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
    [Crossref]
  28. J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).
  29. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref]
  30. T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45(24), 6077–6085 (2006).
    [Crossref]
  31. K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
    [Crossref]
  32. H. Funamizu and J. Uozumi, “Scaling reduction of the contrast of fractal speckles detected with a finite aperture,” Opt. Commun. 281(4), 543–549 (2008).
    [Crossref]
  33. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
    [Crossref]
  34. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
    [Crossref]
  35. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
    [Crossref]
  36. D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34(23), 3610–3612 (2009).
    [Crossref]
  37. R. Schubert, A. Vollmer, S. Ketelhut, and B. Kemper, “Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens,” Biomed. Opt. Express 5(12), 4213–4222 (2014).
    [Crossref]
  38. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18(19), 19462–19478 (2010).
    [Crossref]
  39. X.-J. Lai, H.-Y. Tu, C.-H. Wu, Y.-C. Lin, and C.-J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
    [Crossref]

2019 (1)

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

2018 (1)

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12(10), 578–589 (2018).
[Crossref]

2016 (1)

H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
[Crossref]

2015 (2)

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

X.-J. Lai, H.-Y. Tu, C.-H. Wu, Y.-C. Lin, and C.-J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54(1), A51–A58 (2015).
[Crossref]

2014 (3)

2013 (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

2012 (1)

2010 (4)

2009 (2)

2008 (5)

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
[Crossref]

X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
[Crossref]

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

H. Funamizu and J. Uozumi, “Scaling reduction of the contrast of fractal speckles detected with a finite aperture,” Opt. Commun. 281(4), 543–549 (2008).
[Crossref]

2007 (2)

2006 (2)

2005 (1)

2001 (1)

2000 (1)

1998 (2)

1995 (2)

K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
[Crossref]

1991 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Aizu, Y.

H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
[Crossref]

Asakura, T.

J. Uozumi, M. Ibrahim, and T. Asakura, “Fractal speckles,” Opt. Commun. 156(4-6), 350–358 (1998).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
[Crossref]

Badizadegan, K.

Baumbach, T.

Bernhardt, I.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Charrière, F.

Cheng, C.-J.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Choi, W.

Clerc, F. L.

Collot, L.

Colomb, T.

Cotte, Y.

Cuche, E.

Dan, D.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Dasari, R.

Depeursinge, C.

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Eigenthaler, U.

Emery, Y.

Faridian, A.

Feld, M. S.

Ferraro, P.

Finizio, A.

Fixler, D.

Friberg, A. T.

Funamizu, H.

H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
[Crossref]

H. Funamizu and J. Uozumi, “Scaling reduction of the contrast of fractal speckles detected with a finite aperture,” Opt. Commun. 281(4), 543–549 (2008).
[Crossref]

H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422 (2007).
[Crossref]

Gao, P.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Garcia, J.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref]

García, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2006).

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).

Gross, M.

Hennelly, B. M.

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Hirscher, M.

Hopp, D.

Iannone, M.

Ibrahim, M.

J. Uozumi, M. Ibrahim, and T. Asakura, “Fractal speckles,” Opt. Commun. 156(4-6), 350–358 (1998).
[Crossref]

Ivanova, L.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Jung, J.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Jüptner, W.

Kang, X.

Kebbel, V.

Kelly, D. P.

Kemper, B.

Ketelhut, S.

Kim, K.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

Kolenovic, E.

Kühn, J.

Lai, X.-J.

Langehanenberg, P.

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Lee, K.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Lee, S.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Lei, M.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Li, R.

Lin, Y.-C.

Liu, S.

Marquet, P.

Memmolo, P.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Mico, V.

Micó, V.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Min, J.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Monaghan, D. S.

Montfort, F.

Nahm, S.

Netti, P. A.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Osten, W.

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
[Crossref]

Pan, F.

Pandey, N.

Park, H.

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Park, Y.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12(10), 578–589 (2018).
[Crossref]

J. Jung, K. Kim, H. Yu, K. Lee, S. Lee, S. Nahm, H. Park, and Y. Park, “Biomedical applications of holographic microspectroscopy,” Appl. Opt. 53(27), G111–G122 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref]

Paturzo, M.

Pavillon, N.

Pedrini, G.

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
[Crossref]

Popescu, G.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12(10), 578–589 (2018).
[Crossref]

Rong, L.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Schubert, R.

Tokuno, Y.

H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
[Crossref]

Toy, M. F.

Tu, H.-Y.

Turunen, J.

Uno, K.

K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
[Crossref]

Uozumi, J.

H. Funamizu and J. Uozumi, “Scaling reduction of the contrast of fractal speckles detected with a finite aperture,” Opt. Commun. 281(4), 543–549 (2008).
[Crossref]

H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422 (2007).
[Crossref]

J. Uozumi, M. Ibrahim, and T. Asakura, “Fractal speckles,” Opt. Commun. 156(4-6), 350–358 (1998).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
[Crossref]

K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
[Crossref]

Vasara, A.

Ventre, M.

Vollmer, A.

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref]

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

Wu, C.-H.

Xiao, W.

Yamaguchi, I.

Yan, S.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Yang, Y.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Yao, B.

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Yaqoob, Z.

Ye, T.

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Yu, H.

Zalevsky, Z.

Zhang, T.

Zheng, J.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Adv. Opt. Photonics (1)

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photonics 11(1), 135–214 (2019).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Bioelectrochemistry (1)

I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochemistry 73(2), 92–96 (2008).
[Crossref]

Biomed. Opt. Express (1)

Chin. Opt. Lett. (2)

J. Opt. (1)

J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17(8), 085301 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12(10), 578–589 (2018).
[Crossref]

Opt. Commun. (3)

K. Uno, J. Uozumi, and T. Asakura, “Speckle clustering in diffraction patterns of random objects under ring-slit illumination,” Opt. Commun. 114(3-4), 203–210 (1995).
[Crossref]

J. Uozumi, M. Ibrahim, and T. Asakura, “Fractal speckles,” Opt. Commun. 156(4-6), 350–358 (1998).
[Crossref]

H. Funamizu and J. Uozumi, “Scaling reduction of the contrast of fractal speckles detected with a finite aperture,” Opt. Commun. 281(4), 543–549 (2008).
[Crossref]

Opt. Express (8)

H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express 15(12), 7415–7422 (2007).
[Crossref]

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005).
[Crossref]

Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, “Microscopy image resolution improvement by deconvolution of complex fields,” Opt. Express 18(19), 19462–19478 (2010).
[Crossref]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18(13), 14159–14164 (2010).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref]

P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3d tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express 20(27), 28485–28493 (2012).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

H. Funamizu, Y. Tokuno, and Y. Aizu, “Estimation of spectral transmittance curves from rgb images in color digital holographic microscopy using speckle illuminations,” Opt. Rev. 23(3), 535–543 (2016).
[Crossref]

Photonics Res. (1)

J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang, and S. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photonics Res. 2(3), 87–91 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Sensors (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

Waves in Random Media (1)

K. Uno, J. Uozumi, and T. Asakura, “Texture analysis of speckles due to random koch fractals by lacunarity,” Waves in Random Media 5(2), 253–263 (1995).
[Crossref]

Other (4)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2006).

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of the enhancement of the spatial resolution in DHM using speckle patterns. BS: Beam splitter; $z_s$: Propagation distance of speckle patterns between the diffuser and the object.
Fig. 2.
Fig. 2. Spatial correlation coefficients and power spectra of the intensity distributions of speckle patterns generated from a circular aperture and a ring aperture. (a) Spatial correlation coefficients. (b) Power spectra. The horizontal axis of (a) is $\Delta \rho = 2\pi \Delta r/\lambda z_{s}$, and $\Delta r$ is the difference between the radii in the polar coordinate. The horizontal axis of (b) is the radial coordinate of the spatial-frequency region.
Fig. 3.
Fig. 3. Experimental setup of DHM using speckle patterns. M : Mirror; BS : Beam splitter; ND : Neutral density filter; OB : Objective lens; L : Lens.
Fig. 4.
Fig. 4. Reconstruction process of digital holograms.
Fig. 5.
Fig. 5. Experimental results of the speckle patterns in (a) the circular aperture and (b) the ring aperture for $r_{i}/r_{o}$=0.95. (c) shows the spatial correlation coefficients of the speckle intensities of (a) and (b).
Fig. 6.
Fig. 6. Intensity and phase distributions of the reconstructed images of the star target and the QPMT. (a)–(c) show the intensity distributions of the reconstructed images of the star target. (d)–(f) show the phase distributions of the reconstructed images of the QPMT. (a) and (d) correspond to the case of Gaussian-shaped illumination. (b) and (e) correspond to the case of speckle illuminations using the circular aperture. (c) and (f) show the results of speckle illuminations using the ring aperture.
Fig. 7.
Fig. 7. Speckle contrasts of the intensity distributions and standard deviations of the phase distributions of the reconstructed images against the number of holograms. (a) Speckle contrasts. (b) Standard deviations.
Fig. 8.
Fig. 8. SNR of the intensity and phase distributions of the reconstructed images against the number of holograms. (a) Intensity. (b) Phase.
Fig. 9.
Fig. 9. Analytical process of the spatial resolution using the contrast and SNR of the fringe patterns.
Fig. 10.
Fig. 10. Reconstructed images after transforming from the Cartesian coordinate to the polar coordinate. The arrangement of these figures corresponds to the reconstructed images shown in Figs. 6 (a)–(f).
Fig. 11.
Fig. 11. Results of the application of the analysis in Fig. 9 to the reconstructed images of the star target. (a) Contrast of the fringe patterns in the reconstructed image of the star target. (b) Magnified image of (a).
Fig. 12.
Fig. 12. Results of the application of the analysis in Fig. 9 to the reconstructed image of the QPMT. (a) Contrast of the fringe patterns in the reconstructed image of the quantitative phase microscopy target. (b) Magnified image of (a).
Fig. 13.
Fig. 13. Results of SNR of the analysis in Fig. 9. (a) Intensity. (b) Phase.
Fig. 14.
Fig. 14. One-dimensional plots of the fringe patterns in the reconstructed images. (a) Fringe patterns of the intensity distributions of the reconstructed images in 366 pixels shown in Figs. 10 (a)–(c). (b) Fringe patterns of the phase distributions of the reconstructed images in 206 pixels shown in Figs. 10 (d)–(f).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

μ I ( Δ x ) = | I p ( x ) exp ( j 2 π λ z s x Δ x ) d x | 2 | I p ( x ) d x | 2 ,
μ I ( Δ ρ ) = 1 ( r o 2 r i 2 ) 2 [ 2 r o J 1 ( r o Δ ρ ) Δ ρ 2 r i J 1 ( r i Δ ρ ) Δ ρ ] 2 ,
μ I ( Δ ρ ) = | 2 J 1 ( r o Δ ρ ) r o Δ ρ | 2 .
μ I ( Δ ρ ) = J 0 2 ( r o Δ ρ ) ,
δ x = 0.61 λ ( N A g + N A s ) = 0.61 λ ( N A g + sin ϕ ) ,
G ( ν ) = 2 π ( ν o 2 ν i 2 ) R e { ν o 2 [ K 1 ( ν ) K 2 ( ν ) ] ν i 2 [ K 3 ( ν ) K 4 ( ν ) ] } ,
K 1 ( ν ) = arccos ( ν 2 ν o ) ν 2 ν o 1 ( ν 2 ν o ) 2 ,
K 2 ( ν ) = arccos ( ν p 2 ν o ) ν p 2 ν o 1 ( ν p 2 ν o ) 2 ,
K 3 ( ν ) = arccos ( ν 2 ν i ) + ν 2 ν i 1 ( ν 2 ν i ) 2 ,
K 4 ( ν ) = arccos ( ν q 2 ν i ) ν q 2 ν i 1 ( ν q 2 ν i ) 2 ,
G ( ν ) = 2 π [ arccos ( ν 2 ν o ) ν 2 ν o 1 ( ν 2 ν o ) 2 ] .
G ( ν ) = δ ( ν ) ,
Φ a = arctan ( Σ i = 1 n sin Φ d , i Σ i = 1 n cos Φ d , i ) ,

Metrics