Abstract

We demonstrate the transmission of 3 × 20 Gbaud PAM4 signals over a 360 km, field-deployed, amplified transmission link. We compare dispersion compensation using optical phase conjugation (OPC) to dispersion compensating fibre (DCF) and find an improvement in the received bit error ratio of an order of magnitude using our OPC implementation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

120 Gbaud PAM-4 transmission over 80-km SSMF using optical band interleaving and Kramers-Kronig detection

Tao Gui, Langyu Yi, Changjian Guo, Chao Lu, and Alan Pak Tao Lau
Opt. Express 26(20) 25934-25943 (2018)

Generation of high-speed PAM4 signal by overdriving two Mach-Zehnder modulators

Sunghyun Bae, Byung Gon Kim, and Yun C. Chung
OSA Continuum 2(2) 486-494 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Bell Labs, “Metro Network Traffic Growth: An Architecture Impact Study Strategic White Paper,” Tech. Rep. (2013).
  2. S. Shao, J. Ding, L. Zheng, K. Zou, L. Zhang, F. Zhang, and L. Yang, “Optical PAM-4 Signal Generation using a Silicon Mach-Zehnder Optical Modulator,” Opt. Express 25(19), 23003–23013 (2017).
    [Crossref]
  3. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced Modulation Formats for 400-Gbps Short-reach Optical Inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref]
  4. U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.
  5. P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.
  6. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  7. A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
    [Crossref]
  8. B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.
  9. R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.
  10. T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
    [Crossref]
  11. S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per $\lambda$λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
    [Crossref]
  12. S. Ramachandran, Fiber Based Dispersion Compensation (Springer-Verlag New York, 2007).
  13. G. Gnanagurunathan and F. A. Rahman, “Comparing FBG and DCF as Dispersion in the Long Haul Narrowband WDM Systems,” in 2006 IFIP International Conference on Wireless and Optical Communications Networks (2006), p. 4.
  14. Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.
  15. C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km Single Mode Fiber Using Maximum Likelihood Sequence Estimation,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Th4A.5.
  16. M. S. Alfiad, D. van den Borne, F. N. Hauske, A. Napoli, A. M. J. Koonen, and H. de Waardt, “Maximum-Likelihood Sequence Estimation for Optical Phase-Shift Keyed Modulation Formats,” J. Lightwave Technol. 27(20), 4583–4594 (2009).
    [Crossref]
  17. J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.
  18. M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical Single Side-Band Nyquist PAM-4 Transmission using Dual-Drive MZM Modulation and Direct Detection,” Opt. Express 26(6), 6629–6638 (2018).
    [Crossref]
  19. L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
    [Crossref]
  20. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig Coherent Receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  21. Q. Zhang, N. Stojanovic, C. Xie, C. Prodaniuc, and P. Laskowski, “Transmission of Single Lane 128 Gbit/s PAM-4 Signals over an 80 km SSMF Link, Enabled by DDMZM Aided Dispersion Pre-Compensation,” Opt. Express 24(21), 24580–24591 (2016).
    [Crossref]
  22. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for Channel Dispersion by Nonlinear Optical Phase Conjugation,” Opt. Lett. 4(2), 52–54 (1979).
    [Crossref]
  23. A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
    [Crossref]
  24. C. Lorattanasane and K. Kikuchi, “Design Theory of Long-distance Optical Transmission Systems using Midway Optical Phase Conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
    [Crossref]
  25. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr Nonlinearity Mitigation: Mid-Link Spectral Inversion Versus Digital Backpropagation in 5 × 28-GBd PDM 16-QAM Signal Transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
    [Crossref]
  26. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  27. S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
    [Crossref]
  28. A. D. Ellis, M. A. Z. A. Khateeb, and M. E. McCarthy, “Impact of Optical Phase Conjugation on the Nonlinear Shannon Limit,” J. Lightwave Technol. 35(4), 792–798 (2017).
    [Crossref]
  29. N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, “Investigations of High-Speed Optical Transmission Systems Employing Absolute Added Correlative Coding (AACC),” Opt. Fiber Technol. 30, 23–31 (2016).
    [Crossref]
  30. A. Buchwald and K. Martin, Integrated Fiber-Optic Receivers, The Springer International Series in Engineering and Computer Science (Springer US, 2012).
  31. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge, 2012).
  32. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
    [Crossref]
  33. Q. Lin and G. P. Agrawal, “Vector Theory of Four-wave Mixing: Polarization Effects in Fiber-optic Parametric Amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [Crossref]
  34. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength Conversion of Optical 64QAM through FWM in HNLF and its Performance Optimization by Constellation Monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref]
  35. K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

2018 (2)

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical Single Side-Band Nyquist PAM-4 Transmission using Dual-Drive MZM Modulation and Direct Detection,” Opt. Express 26(6), 6629–6638 (2018).
[Crossref]

2017 (4)

2016 (5)

2015 (3)

2014 (1)

2012 (1)

2009 (1)

2004 (1)

2002 (1)

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

1999 (1)

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

1997 (1)

C. Lorattanasane and K. Kikuchi, “Design Theory of Long-distance Optical Transmission Systems using Midway Optical Phase Conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[Crossref]

1979 (1)

Agrawal, G. P.

Alfiad, M. S.

Al-Khateeb, M. A. Z.

Antonelli, C.

Antonini, C.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Bach, H. G.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Bao, Y.

Baveja, P. P.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Bayvel, P.

Bottrill, K.

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

Bottrill, K. R. H.

Buchwald, A.

A. Buchwald and K. Martin, Integrated Fiber-Optic Receivers, The Springer International Series in Engineering and Computer Science (Springer US, 2012).

Carvalho, L. H. H.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Chan, T.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per $\lambda$λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Chandrasekhar, S.

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.

Chen, C.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km Single Mode Fiber Using Maximum Likelihood Sequence Estimation,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Th4A.5.

Chiuchiarelli, A.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Corchia, A.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Cunningham, D. G.

D’Ottavi, A.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Dall’Ara, R.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

de Waardt, H.

Ding, J.

Dochhan, A.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
[Crossref]

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Dong-Nhat, N.

N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, “Investigations of High-Speed Optical Transmission Systems Employing Absolute Added Correlative Coding (AACC),” Opt. Fiber Technol. 30, 23–31 (2016).
[Crossref]

Doran, N.

Eiselt, M.

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Eiselt, M. H.

Eiselt, N.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
[Crossref]

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Elbers, J. P.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
[Crossref]

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Ellis, A. D.

Elsherif, M. A.

N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, “Investigations of High-Speed Optical Transmission Systems Employing Absolute Added Correlative Coding (AACC),” Opt. Fiber Technol. 30, 23–31 (2016).
[Crossref]

Fabbri, S.

Fekete, D.

Figueiredo, R. C.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Fischer, J. K.

Fu, S.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Gao, F.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Gene, J. M.

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.

Gnanagurunathan, G.

G. Gnanagurunathan and F. A. Rahman, “Comparing FBG and DCF as Dispersion in the Long Haul Narrowband WDM Systems,” in 2006 IFIP International Conference on Wireless and Optical Communications Networks (2006), p. 4.

Gordienko, V.

Griesser, H.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
[Crossref]

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Guekos, G.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Harper, P.

Hauske, F. N.

Hesketh, G.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Ho, I. L.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Hsieh, C.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Huang, X.

Ingham, J. D.

Iqbal, M. A.

Jazayerifar, M.

Kanazawa, S.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

Kawanishi, T.

Kazovsky, L. G.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

Kelly, B.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Khateeb, M. A. Z. A.

Kikuchi, K.

C. Lorattanasane and K. Kikuchi, “Design Theory of Long-distance Optical Transmission Systems using Midway Optical Phase Conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[Crossref]

Kogelnik, H.

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.

Koonen, A. M. J.

Kottke, C.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Laskowski, P.

Lavery, D.

Li, J.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced Modulation Formats for 400-Gbps Short-reach Optical Inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref]

Li, M.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Li, X.

M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical Single Side-Band Nyquist PAM-4 Transmission using Dual-Drive MZM Modulation and Direct Detection,” Opt. Express 26(6), 6629–6638 (2018).
[Crossref]

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Li, Z.

Liang, Y.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Liga, G.

Lii, J.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Lin, Q.

Liu, G. N.

Liu, Z.

S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
[Crossref]

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Lorattanasane, C.

C. Lorattanasane and K. Kikuchi, “Design Theory of Long-distance Optical Transmission Systems using Midway Optical Phase Conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[Crossref]

Lu, G.-W.

Luo, M.

Ma, N.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Maher, R.

Malekmohammadi, A.

N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, “Investigations of High-Speed Optical Transmission Systems Employing Absolute Added Correlative Coding (AACC),” Opt. Fiber Technol. 30, 23–31 (2016).
[Crossref]

Marhic, M. E.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge, 2012).

Martelli, F.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Martin, K.

A. Buchwald and K. Martin, Integrated Fiber-Optic Receivers, The Springer International Series in Engineering and Computer Science (Springer US, 2012).

Matsuzaki, H.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

McCarthy, M. E.

Mecozzi, A.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig Coherent Receiver,” Optica 3(11), 1220–1227 (2016).
[Crossref]

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Moehrle, M.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Molzow, W. D.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Mondaca, G. S.

Nada, M.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

Nakajima, F.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

Napoli, A.

Narodovitch, M.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

O’Caroll, J.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Parmigiani, F.

S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
[Crossref]

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

Penty, R. V.

Pepper, D. M.

Perentos, A.

Petermann, K.

Petropoulos, P.

S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
[Crossref]

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

Peucheret, C.

Phelan, R.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Phillips, I. D.

Prodaniuc, C.

Przyrembel, G.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Qiu, K.

Rahman, F. A.

G. Gnanagurunathan and F. A. Rahman, “Comparing FBG and DCF as Dispersion in the Long Haul Narrowband WDM Systems,” in 2006 IFIP International Conference on Wireless and Optical Communications Networks (2006), p. 4.

Ramachandran, S.

S. Ramachandran, Fiber Based Dispersion Compensation (Springer-Verlag New York, 2007).

Ranzini, S. M.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Reis, J. D.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Richardson, D.

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

Richardson, D. J.

S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
[Crossref]

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Richter, T.

Ros, F. D.

Sackey, I.

Sakamoto, T.

Sano, K.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

Schubert, C.

Shao, S.

Shtaif, M.

Shu, L.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Sigmund, A.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Slavík, R.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

Song, Y.

Souza, A. L. N.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

Spano, P.

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

Stephens, M. F. C.

Stojanovic, N.

Sun, Y.

Sygletos, S.

Taengnoi, N.

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

Tan, M.

Tang, X.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km Single Mode Fiber Using Maximum Likelihood Sequence Estimation,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Th4A.5.

Teipen, B.

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

Troppenz, U.

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

Turitsyn, S. K.

Uesaka, K.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

van den Borne, D.

Wan, Z.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Wang, C.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Wang, D.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Wang, Y.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Way, W. I.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per $\lambda$λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Wei, J. L.

White, I. H.

Winzer, P. J.

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

Xie, C.

Xu, K.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Xu, X.

Yang, L.

Yang, Q.

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

Yariv, A.

Yi, X.

Yin, S.

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per $\lambda$λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

Ying, H.

Yoshima, S.

Yoshimatsu, T.

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

Zhang, F.

Zhang, H.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhang, Z.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km Single Mode Fiber Using Maximum Likelihood Sequence Estimation,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Th4A.5.

Zheng, J.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

Zheng, L.

Zhong, Q.

Zhou, E.

Zhu, M.

Zou, K.

Zuo, T.

IEEE Photonics J. (1)

L. Shu, J. Li, Z. Wan, F. Gao, S. Fu, X. Li, Q. Yang, and K. Xu, “Single-Lane 112-Gbit/s SSB-PAM4 Transmission With Dual-Drive MZM and Kramers-Kronig Detection Over 80-km SSMF,” IEEE Photonics J. 9(6), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent Two-pump Fiber Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 14(7), 911–913 (2002).
[Crossref]

A. Corchia, C. Antonini, A. D’Ottavi, A. Mecozzi, F. Martelli, P. Spano, G. Guekos, and R. Dall’Ara, “Mid-span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: a System Demonstration,” IEEE Photonics Technol. Lett. 11(2), 275–277 (1999).
[Crossref]

S. Yin, T. Chan, and W. I. Way, “100-km DWDM Transmission of 56-Gb/s PAM4 per $\lambda$λ via Tunable Laser and 10-Gb/s InP MZM,” IEEE Photonics Technol. Lett. 27(24), 2531–2534 (2015).
[Crossref]

IEICE Electron. Express (1)

T. Yoshimatsu, M. Nada, S. Kanazawa, F. Nakajima, H. Matsuzaki, and K. Sano, “Dispersion Tolerance of 100-Gbit/s PAM4 Optical Link Utilizing High-Speed Avalanche Photodiode Receiver,” IEICE Electron. Express 15(16), 20180624 (2018).
[Crossref]

J. Lightwave Technol. (8)

M. S. Alfiad, D. van den Borne, F. N. Hauske, A. Napoli, A. M. J. Koonen, and H. de Waardt, “Maximum-Likelihood Sequence Estimation for Optical Phase-Shift Keyed Modulation Formats,” J. Lightwave Technol. 27(20), 4583–4594 (2009).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J. P. Elbers, “Solutions for 80 km DWDM Systems,” J. Lightwave Technol. 34(2), 491–499 (2016).
[Crossref]

C. Lorattanasane and K. Kikuchi, “Design Theory of Long-distance Optical Transmission Systems using Midway Optical Phase Conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[Crossref]

I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr Nonlinearity Mitigation: Mid-Link Spectral Inversion Versus Digital Backpropagation in 5 × 28-GBd PDM 16-QAM Signal Transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
[Crossref]

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

S. Yoshima, Y. Sun, Z. Liu, K. R. H. Bottrill, F. Parmigiani, D. J. Richardson, and P. Petropoulos, “Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation with Efficient Bandwidth Utilization,” J. Lightwave Technol. 35(4), 971–978 (2017).
[Crossref]

A. D. Ellis, M. A. Z. A. Khateeb, and M. E. McCarthy, “Impact of Optical Phase Conjugation on the Nonlinear Shannon Limit,” J. Lightwave Technol. 35(4), 792–798 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Fiber Technol. (1)

N. Dong-Nhat, M. A. Elsherif, and A. Malekmohammadi, “Investigations of High-Speed Optical Transmission Systems Employing Absolute Added Correlative Coding (AACC),” Opt. Fiber Technol. 30, 23–31 (2016).
[Crossref]

Opt. Lett. (1)

Optica (1)

Other (13)

K. Bottrill, N. Taengnoi, F. Parmigiani, D. Richardson, and P. Petropoulos, “Dataset for 'PAM4 transmission over 360 km of fibre using optical phase conjugation',” University of Southampton, accessed 3 Jan 2019.

A. Buchwald and K. Martin, Integrated Fiber-Optic Receivers, The Springer International Series in Engineering and Computer Science (Springer US, 2012).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge, 2012).

U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W. D. Molzow, A. Sigmund, H. G. Bach, and M. Moehrle, “1.3 μm Electroabsorption Modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in 26th International Conference on Indium Phosphide and Related Materials (IPRM) (2014), pp. 1–2.

P. P. Baveja, M. Li, D. Wang, C. Hsieh, H. Zhang, N. Ma, Y. Wang, J. Lii, Y. Liang, C. Wang, I. L. Ho, and J. Zheng, “56 Gb/s PAM-4 Directly Modulated Laser for 200G/400G Data-center Optical Links,” in 2017 Optical Fiber Communications Conference and Exhibition (OFC) (2017), pp. 1–3.

B. Teipen, N. Eiselt, A. Dochhan, H. Griesser, M. Eiselt, and J. P. Elbers, “Investigation of PAM-4 for Extending Reach in Data Center Interconnect Applications,” in 2015 17th International Conference on Transparent Optical Networks (ICTON) (2015), pp. 1–4.

R. C. Figueiredo, A. L. N. Souza, S. M. Ranzini, A. Chiuchiarelli, L. H. H. Carvalho, and J. D. Reis, “Investigation of 56-GBd PAM4 Bandwidth and Chromatic Dispersion Limitations for Data Center Applications,” in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (2017), pp. 1–5.

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and Chromatic Dispersion Compensation Using an MLSE,” in 2006 European Conference on Optical Communications (2006), pp. 1–2.

Bell Labs, “Metro Network Traffic Growth: An Architecture Impact Study Strategic White Paper,” Tech. Rep. (2013).

S. Ramachandran, Fiber Based Dispersion Compensation (Springer-Verlag New York, 2007).

G. Gnanagurunathan and F. A. Rahman, “Comparing FBG and DCF as Dispersion in the Long Haul Narrowband WDM Systems,” in 2006 IFIP International Conference on Wireless and Optical Communications Networks (2006), p. 4.

Z. Liu, G. Hesketh, B. Kelly, J. O’Caroll, R. Phelan, D. J. Richardson, and R. Slavík, “300-km Transmission of Dispersion Pre-compensated PAM4 Using Direct Modulation and Direct Detection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th3D.6.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km Single Mode Fiber Using Maximum Likelihood Sequence Estimation,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Th4A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) Transmitter, b) Receiver, c) OPC set-up d) link configuration using DCF for dispersion compensation and e) link configuration using OPC for dispersion compensation.
Fig. 2.
Fig. 2. Spectrum after propagation through HNLF.
Fig. 3.
Fig. 3. For the single channel case: a) BER vs launch power into HNLF, b) BER vs link launch power.
Fig. 4.
Fig. 4. Results on simulations with VPIphotonics Design Suite a) BER as it varies with the Noise Figure of the EDFAs in the link for both DCM equipped link (orange squares) and OPC equipped link (blue diamonds), b) optimum link launch power as it varies with signal power launched into HNLF (blue diamonds), DCM reference (orange dashed line).
Fig. 5.
Fig. 5. Simple wavelength conversion simulation showing the change in peak power which can possibly be observed when moving from a 1 channel to a 3 channel converted band. Optimal launch powers are identified with dashed lines.
Fig. 6.
Fig. 6. For the three channel case, eye diagrams and BER vs link power curves for: a) Ch50.5, b) Ch51.0 and c) Ch51.5.

Metrics