Abstract

Digital optical phase conjugation (DOPC) is a well-known technique for generating a counter-propagating wavefront and reversing multiple scattering effects. Until now, implementations of DOPC are mostly based on a switching geometry. For some applications such as optical tweezers in turbid media, however, switching-based DOPC could fail to grab fast-moving particles. Besides, a DOPC modality with temporally-continuous gain is required. In this paper, a continuous amplified digital optical phase conjugator (CA-DOPC) is introduced to form a focusing point after passing through a heavily scattering medium. To achieve high-precision alignment between the CMOS image sensor and the spatial light modulator (SLM) in the CA-DOPC, an optical phase conjugator along with a specially designed alignment pattern was used. In this research, the CA-DOPC showed its ability to form a focus point in 2 -mm-thick chicken muscle tissue. In addition, a continuous gain of 166 and peak-to-background ratio (PBR) of 3×105 were observed in the case of 0.5-mm chicken muscle tissue.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Focusing through dynamic tissue with millisecond digital optical phase conjugation

Daifa Wang, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang
Optica 2(8) 728-735 (2015)

Method for auto-alignment of digital optical phase conjugation systems based on digital propagation

Mooseok Jang, Haowen Ruan, Haojiang Zhou, Benjamin Judkewitz, and Changhuei Yang
Opt. Express 22(12) 14054-14071 (2014)

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Yan Liu, Cheng Ma, Yuecheng Shen, Junhui Shi, and Lihong V. Wang
Optica 4(2) 280-288 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10(4), 128–138 (1988).
    [Crossref]
  2. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  3. M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
    [Crossref]
  4. B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
    [Crossref]
  5. X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).
  6. M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
    [Crossref]
  7. I. M. Vellekoop, A. Lagenkijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  8. J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
    [Crossref]
  9. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4(1), 97–102 (2017).
    [Crossref]
  10. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref]
  11. M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
    [Crossref]
  12. Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
    [Crossref]
  13. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [Crossref]
  14. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
    [Crossref]
  15. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
    [Crossref]
  16. C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
    [Crossref]
  17. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref]
  18. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
    [Crossref]
  19. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [Crossref]
  20. A. Jang, M. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
    [Crossref]
  21. S. N. Khonina and I. Golub, “Engineering the smallest 3D symmetrical bright and dark focal spots,” J. Opt. Soc. Am. A 30(10), 2029–2033 (2013).
    [Crossref]
  22. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref]
  23. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref]
  24. M. Jang and et al., “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
    [Crossref]
  25. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
    [Crossref]
  26. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
    [Crossref]
  27. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref]
  28. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref]
  29. X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
    [Crossref]
  30. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref]
  31. P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
    [Crossref]
  32. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref]
  33. G. Lerosey and M. Fink, “Acousto-optic imaging: Merging the best of two worlds,” Nat. Photonics 7(4), 265–267 (2013).
    [Crossref]
  34. K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
    [Crossref]
  35. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref]
  36. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering specimens,” Optica 1(4), 227–232 (2014).
    [Crossref]
  37. H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6(1), 8968 (2015).
    [Crossref]
  38. H. Ruan and et al., “Focusing light inside scattering media with magnetic-particle-guided wavefront shaping,” Optica 4(11), 1337–1343 (2017).
    [Crossref]
  39. M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation,” Opt. Express 18(21), 22348–22357 (2010).
    [Crossref]
  40. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref]
  41. C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
    [Crossref]
  42. M. Azimipour, F. Atry, and R. Pashaie, “Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials,” Appl. Opt. 55(11), 2873–2880 (2016).
    [Crossref]
  43. A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
    [Crossref]
  44. T. R. Hillman and et al., “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3(1), 1909 (2013).
    [Crossref]
  45. Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
    [Crossref]
  46. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full polarization digital optical phase conjugation,” Opt. Lett. 41(6), 1130–1133 (2016).
    [Crossref]
  47. Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
    [Crossref]
  48. C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
    [Crossref]
  49. C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
    [Crossref]
  50. D. Wang and et al., “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref]
  51. O. Katz, E. Small, Y. Guan, and Y. Silberberg, “Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers,” Optica 1(3), 170–174 (2014).
    [Crossref]
  52. C. C. Sun and et al., “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35(11), 1815–1819 (1996).
    [Crossref]
  53. C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
    [Crossref]
  54. J. Feinberg, “Self-pumped continuous-wave phase-cnjugator using internal reflection,” Opt. Lett. 7(10), 486–488 (1982).
    [Crossref]
  55. E. J. McDowell and et al., “Turbidity suppression from the ballistic to the diff usive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
    [Crossref]
  56. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  57. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref]
  58. I. M. Vellekoop, “Controlling the Propagation of Light in Disordered Scattering Media,” PhD thesis. Univ. of Twente (2008).
  59. C. Gu and P. Yei, “Partical phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5–6), 353–357 (1994).
    [Crossref]
  60. E. Jakeman and K. D. Ridley, “Incomplete phase conjugation through a random-phase screen. I. Theory,” J. Opt. Soc. Am. A 13(11), 2279–2287 (1996).
    [Crossref]

2019 (1)

A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
[Crossref]

2018 (1)

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

2017 (3)

2016 (4)

2015 (7)

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6(1), 8968 (2015).
[Crossref]

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

M. Jang and et al., “Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin,” Biomed. Opt. Express 6(1), 72–85 (2015).
[Crossref]

D. Wang and et al., “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

2014 (6)

2013 (8)

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

G. Lerosey and M. Fink, “Acousto-optic imaging: Merging the best of two worlds,” Nat. Photonics 7(4), 265–267 (2013).
[Crossref]

T. R. Hillman and et al., “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3(1), 1909 (2013).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
[Crossref]

A. Jang, M. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
[Crossref]

S. N. Khonina and I. Golub, “Engineering the smallest 3D symmetrical bright and dark focal spots,” J. Opt. Soc. Am. A 30(10), 2029–2033 (2013).
[Crossref]

M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref]

2012 (8)

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref]

2011 (1)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref]

2010 (7)

2009 (2)

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[Crossref]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[Crossref]

2007 (1)

1996 (2)

1994 (1)

C. Gu and P. Yei, “Partical phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5–6), 353–357 (1994).
[Crossref]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

1988 (1)

M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

1982 (1)

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ashkin, A.

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Atry, F.

Azimipour, M.

Bai, X.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Berghoff, K.

Büttner, L.

Centurion, M.

Chen, S.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Chen, S. Y.

Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
[Crossref]

Cheng, C. Y.

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

Cheng, S. H.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref]

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref]

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[Crossref]

Czarske, J. W.

Denz, C.

Di, J.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Farahi, S.

Feinberg, J.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

Fink, M.

G. Lerosey and M. Fink, “Acousto-optic imaging: Merging the best of two worlds,” Nat. Photonics 7(4), 265–267 (2013).
[Crossref]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref]

Golub, I.

Gong, L.

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

Grange, R.

Gross, S. P.

B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
[Crossref]

Gu, C.

C. Gu and P. Yei, “Partical phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5–6), 353–357 (1994).
[Crossref]

Guan, Y.

Haufe, D.

Hemphill, A. S.

A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
[Crossref]

Hillman, T. R.

T. R. Hillman and et al., “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3(1), 1909 (2013).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

Hsieh, C. L.

Hwang, J.

A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
[Crossref]

Jakeman, E.

Jang, A.

Jang, M.

Judkewitz, B.

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering specimens,” Optica 1(4), 227–232 (2014).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Jun, Y.

B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
[Crossref]

Katz, O.

Khonina, S. N.

Koukourakis, N.

Lagenkijk, A.

I. M. Vellekoop, A. Lagenkijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

Laporte, G.

Lerosey, G.

G. Lerosey and M. Fink, “Acousto-optic imaging: Merging the best of two worlds,” Nat. Photonics 7(4), 265–267 (2013).
[Crossref]

Li, X.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Li, Y.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Li, Y. M.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref]

Lin, C. C.

Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
[Crossref]

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

Liu, C.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Liu, H.

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref]

Liu, K.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Liu, Y.

Ma, C.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4(1), 97–102 (2017).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full polarization digital optical phase conjugation,” Opt. Lett. 41(6), 1130–1133 (2016).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

McDowell, E. J.

E. J. McDowell and et al., “Turbidity suppression from the ballistic to the diff usive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref]

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[Crossref]

Minsky, M.

M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Moser, C.

Mosk, A. P.

I. M. Vellekoop, A. Lagenkijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref]

Narayanareddy, B. R. J.

B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
[Crossref]

Papadopoulos, I. N.

Pashaie, R.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Psaltis, D.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref]

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[Crossref]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

Pu, Y.

Ridley, K. D.

Ruan, H.

Sentenac, M.

Shen, Y.

Shi, J.

Si, K.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref]

Silberberg, Y.

Small, E.

Sun, C. C.

Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
[Crossref]

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

C. C. Sun and et al., “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35(11), 1815–1819 (1996).
[Crossref]

Sun, D.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Suzuki, Y.

Tay, J. W.

Tripathy, S. K.

B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref]

I. M. Vellekoop, A. Lagenkijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref]

I. M. Vellekoop, “Controlling the Propagation of Light in Disordered Scattering Media,” PhD thesis. Univ. of Twente (2008).

Wang, D.

Wang, L. V.

A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
[Crossref]

Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Sub-Nyquist sampling boosts targeted light transport through opaque scattering media,” Optica 4(1), 97–102 (2017).
[Crossref]

Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full polarization digital optical phase conjugation,” Opt. Lett. 41(6), 1130–1133 (2016).
[Crossref]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref]

Y. Suzuki, J. W. Tay, Q. Yang, and L. V. Wang, “Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation,” Opt. Lett. 39(12), 3441–3444 (2014).
[Crossref]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref]

Wang, Y.

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Wang, Z. Q.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref]

Wei, X. B.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Woerdemann, M.

Xiao, F.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref]

Yang, C.

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6(1), 8968 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering specimens,” Optica 1(4), 227–232 (2014).
[Crossref]

A. Jang, M. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

Yang, C. H.

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref]

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[Crossref]

Yang, Q.

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

Yei, P.

C. Gu and P. Yei, “Partical phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5–6), 353–357 (1994).
[Crossref]

Yu, Y. W.

Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
[Crossref]

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

Zhang, J.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Zhao, J.

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Zhong, M. C.

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref]

Zhou, E. H.

Zhou, F.

Zhou, H.

Zhou, J. H.

M. C. Zhong, L. Gong, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref]

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

C. Ma, J. Di, Y. Li, F. Xiao, J. Zhang, K. Liu, X. Bai, and J. Zhao, “Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation,” Appl. Phys. Express 11(6), 062501 (2018).
[Crossref]

Appl. Phys. Lett. (2)

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

B. R. J. Narayanareddy, Y. Jun, S. K. Tripathy, and S. P. Gross, “Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?” Biophys. J. 107(6), 1474–1484 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (3)

E. J. McDowell and et al., “Turbidity suppression from the ballistic to the diff usive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref]

A. S. Hemphill, Y. Shen, J. Hwang, and L. V. Wang, “High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials,” J. Biomed. Opt. 24(03), 1 (2019).
[Crossref]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt. 17(3), 030506 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Commun. (4)

H. Ruan, M. Jang, and C. Yang, “Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light,” Nat. Commun. 6(1), 8968 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6(1), 5904 (2015).
[Crossref]

M. C. Zhong, X. B. Wei, J. H. Zhou, Z. Q. Wang, and Y. M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Nat. Photonics (8)

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological specimens,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref]

I. M. Vellekoop, A. Lagenkijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref]

G. Lerosey and M. Fink, “Acousto-optic imaging: Merging the best of two worlds,” Nat. Photonics 7(4), 265–267 (2013).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[Crossref]

Opt. Commun. (1)

C. Gu and P. Yei, “Partical phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107(5–6), 353–357 (1994).
[Crossref]

Opt. Eng. (1)

C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54(2), 023101 (2015).
[Crossref]

Opt. Express (12)

M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation,” Opt. Express 18(21), 22348–22357 (2010).
[Crossref]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref]

M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref]

X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[Crossref]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009).
[Crossref]

C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[Crossref]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref]

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref]

A. Jang, M. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
[Crossref]

Opt. Lett. (5)

Optica (7)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on Inventing the Confocal Scanning Microscope,” Scanning 10(4), 128–138 (1988).
[Crossref]

Sci. Rep. (3)

Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6(1), 29452 (2016).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound–light interaction in deep tissue microscopy,” Sci. Rep. 2(1), 748 (2012).
[Crossref]

T. R. Hillman and et al., “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Rep. 3(1), 1909 (2013).
[Crossref]

Other (2)

I. M. Vellekoop, “Controlling the Propagation of Light in Disordered Scattering Media,” PhD thesis. Univ. of Twente (2008).

X. Li, C. Liu, S. Chen, Y. Wang, S. H. Cheng, and D. Sun, “Automated in-vivo transportation of biological cells with a robot-tweezers manipulation system,” IEEE Int. Conf. Nanotech.73–75 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. CA-DOPC system with temporal-continuous gain: (a) The acquisition step for collecting the wave-front passing through the Specimen; (b) The reconstruction step for producing phase conjugate signal. Obj: Objective lens; PH: Pin hole; L: Lens; CL: Cylindrical lens; M: Mirror; BS: Beam splitters; PBS: Polarization beam splitters; HWP: Half wave plates; PL: Linear polarizers; PSLM: Phase-only spatial light modulator; CMOS-IS: CMOS image sensor; BK: Block.
Fig. 2.
Fig. 2. (a) Kitty SPPCM is used to generate an optical phase conjugate reading beam. (b) The interferogram formed by the reference beam and the optical phase conjugate reading beam is recorded by the CMOS-IS1.
Fig. 3.
Fig. 3. (a) Alignment of CA-DOPC system using Kitty SPPCM; (b) Kitty SPPCM; (c) SLM input signal of alignment marks; (d) Conjugate images of alignment marks readout by CMOS-IS1. Obj: Objective lens; L: Lenses; M: Mirrors; CL: Cylindrical lens; BS: Beam splitters; PBS: Polarization beam splitters; HWP: Half wave plates; PSLM: Phase-only spatial light modulator; CMOS-IS: CMOS image sensor; BK: Block plate.
Fig. 4.
Fig. 4. The HDR image of the phase conjugate point for the chicken breast tissues with thickness (a) 0.5 mm, (b) 1 mm and (c) 2 mm, respectively. The second row and the third row show the light distribution along the red dash line and the green dash line, respectively.
Fig. 5.
Fig. 5. PBR compared with Fidelity, it shows both curves are in the same trend with a constant PBR degradation.

Tables (1)

Tables Icon

Table 1. Measured power in different positions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| R r e f + O | 2 = | R r e f | 2 + | O | 2 + R r e f O + R r e f O ,
| R r e f + P | 2 = | R r e f | 2 + | P | 2 + R r e f P + R r e f P ,
S P S L M = [ ( R r e f O ) b p ] [ ( R r e f P ) b p ] = P b p O b p .
P S P S L M = ( P b p P ) O b p O b p .
P B R = π 4 ( N 1 ) + 1 ,
ϕ = α s p e c i m e n α O p t α S p e c t r u m ,
α s p e c i m e n = | E s 2 ( r 2 ) | 2 d r 2 | E s 1 ( r 1 ) | 2 d r 1 ,
α O p t = A p | E D O P C ( r 3 ) | 2 d r 3 | E D O P C ( r 3 ) | 2 d r 3 ,
α S p e c t r u m = A p f | e int ( f ) | 2 d f | e int ( f ) | 2 d f .

Metrics