Abstract

Recent advances in phase only liquid crystal on silicon spatial light modulators are making the prospect of commercial fully holographic display a distinct possibility in the near future. There are, however, many remaining challenges when dealing with holographic data. In particular, widespread lossless image compression algorithms like the Lempel-Ziv-Welch and DEFLATE show poor performance when applied to the phase of holographic data from diffuse objects. This effect is caused by the discontinuous nature of phase. We propose an alternative phase representation that reduces these discontinuities. This representation is then processed with common lossless compression algorithms, achieving a significant volume reduction when compared with the direct compression of the original phase. We demonstrate the effectiveness of our proposal using experimentally registered holograms of diffuse objects. Up to a fivefold increase in compression ratio is achieved with our technique. Experimental reconstruction of the compressed holograms is also tested.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compression of digital holograms for three-dimensional object reconstruction and recognition

Thomas J. Naughton, Yann Frauel, Bahram Javidi, and Enrique Tajahuerce
Appl. Opt. 41(20) 4124-4132 (2002)

Wave atoms for digital hologram compression

Tobias Birnbaum, Ayyoub Ahar, David Blinder, Colas Schretter, Tomasz Kozacki, and Peter Schelkens
Appl. Opt. 58(22) 6193-6203 (2019)

Lossless compression applying linear predictive coding based on the directionality of interference patterns of a hologram

Kim Duk Hyun, Kohei Tamagawa, and Yuji Sakamoto
Appl. Opt. 58(18) 5018-5028 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Powell and K. A. Stetson, “Interferometric Vibration Analysis by Wavefront Reconstruction,” J. Opt. Soc. Am. 55(12), 1593 (1965).
    [Crossref]
  2. N. Nakajima, “Coherent diffractive imaging beyond the Fresnel approximation using a deterministic phase-retrieval method with an aperture-array filter,” Appl. Opt. 52(7), C1–C10 (2013).
    [Crossref]
  3. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003).
    [Crossref]
  4. A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Three-dimensional joint transform correlator cryptosystem,” Opt. Lett. 41(3), 599 (2016).
    [Crossref]
  5. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39(35), 6595 (2000).
    [Crossref]
  6. J. S. Liu and M. R. Taghizadeh, “Iterative algorithm for the design of diffractive phase elements for laser beam shaping,” Opt. Lett. 27(16), 1463 (2002).
    [Crossref]
  7. J. Zhang, N. Pégard, J. Zhong, H. Adesnik, and L. Waller, “3D computer-generated holography by non-convex optimization,” Optica 4(10), 1306 (2017).
    [Crossref]
  8. A. V. Zea, J. F. Barrera Ramirez, and R. Torroba, “Optimized random phase only holograms,” Opt. Lett. 43(4), 731 (2018).
    [Crossref]
  9. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
    [Crossref]
  10. V. Nikolenko, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 1–14 (2008).
    [Crossref]
  11. H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
    [Crossref]
  12. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  13. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
    [Crossref]
  14. D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26(20), 25524 (2018).
    [Crossref]
  15. A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
    [Crossref]
  16. D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
    [Crossref]
  17. A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
    [Crossref]
  18. S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
    [Crossref]
  19. R. Shahnaz, J. F. Walkup, and T. F. Krile, “Image compression in signal-dependent noise,” Appl. Opt. 38(26), 5560–5567 (1999).
    [Crossref]
  20. G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44(7), 1216 (2005).
    [Crossref]
  21. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  22. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070 (2000).
    [Crossref]
  23. J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory 23(3), 337–343 (1977).
    [Crossref]
  24. H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
    [Crossref]
  25. J. R. Buckland, J. M. Huntley, and S. R. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34(23), 5100–5108 (1995).
    [Crossref]
  26. T. A. Welch, “A Technique for High-Performance Data Compression,” Computer 17(6), 8–19 (1984).
    [Crossref]
  27. D. A. Huffman, “A Method for the Construction of Minimum-Redundance Codes,” Proc. IRE 40(9), 1098–1101 (1952).
    [Crossref]
  28. A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression Scheme,” Proc. IEEE 55(3), 356–364 (1967).
    [Crossref]

2019 (1)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

2018 (4)

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26(20), 25524 (2018).
[Crossref]

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
[Crossref]

A. V. Zea, J. F. Barrera Ramirez, and R. Torroba, “Optimized random phase only holograms,” Opt. Lett. 43(4), 731 (2018).
[Crossref]

2017 (1)

2016 (2)

A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Three-dimensional joint transform correlator cryptosystem,” Opt. Lett. 41(3), 599 (2016).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

2013 (2)

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

N. Nakajima, “Coherent diffractive imaging beyond the Fresnel approximation using a deterministic phase-retrieval method with an aperture-array filter,” Appl. Opt. 52(7), C1–C10 (2013).
[Crossref]

2008 (2)

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

V. Nikolenko, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 1–14 (2008).
[Crossref]

2005 (1)

2003 (2)

2002 (3)

2000 (2)

1999 (1)

1997 (1)

H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
[Crossref]

1995 (1)

1984 (1)

T. A. Welch, “A Technique for High-Performance Data Compression,” Computer 17(6), 8–19 (1984).
[Crossref]

1977 (1)

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory 23(3), 337–343 (1977).
[Crossref]

1967 (1)

A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression Scheme,” Proc. IEEE 55(3), 356–364 (1967).
[Crossref]

1965 (1)

1952 (1)

D. A. Huffman, “A Method for the Construction of Minimum-Redundance Codes,” Proc. IRE 40(9), 1098–1101 (1952).
[Crossref]

Adesnik, H.

Ahar, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Antolini, R.

Barrera, J. F.

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

Barrera Ramirez, J. F.

Bettens, S.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Birnbaum, T.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Blinder, D.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26(20), 25524 (2018).
[Crossref]

Buckland, J. R.

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Chen, H.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Chen, Z.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Cherry, C.

A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression Scheme,” Proc. IEEE 55(3), 356–364 (1967).
[Crossref]

Choudhury, A.

Cuche, E.

Depeursinge, C.

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Ding, J.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Emiliani, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Frauel, Y.

Froner, E.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Guo, Y.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Hao, J.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Huffman, D. A.

D. A. Huffman, “A Method for the Construction of Minimum-Redundance Codes,” Proc. IRE 40(9), 1098–1101 (1952).
[Crossref]

Huntley, J. M.

Javidi, B.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Kadono, H.

H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
[Crossref]

Krile, T. F.

Lempel, A.

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory 23(3), 337–343 (1977).
[Crossref]

Liu, J. S.

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Marquet, P.

Mills, G. A.

Nakajima, N.

Naughton, T. J.

Nikolenko, V.

V. Nikolenko, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 1–14 (2008).
[Crossref]

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Ottevaere, H.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Pavone, F. S.

Pégard, N.

Powell, R. L.

Ramirez, J. F. B.

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Three-dimensional joint transform correlator cryptosystem,” Opt. Lett. 41(3), 599 (2016).
[Crossref]

Robinson, A. H.

A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression Scheme,” Proc. IEEE 55(3), 356–364 (1967).
[Crossref]

Sacconi, L.

Schelkens, P.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26(20), 25524 (2018).
[Crossref]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Schretter, C.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

D. Blinder, C. Schretter, and P. Schelkens, “Global motion compensation for compressing holographic videos,” Opt. Express 26(20), 25524 (2018).
[Crossref]

Shahnaz, R.

Stetson, K. A.

Symeonidou, A.

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Taghizadeh, M. R.

Tajahuerce, E.

Takei, H.

H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
[Crossref]

Tebaldi, M.

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

Torroba, R.

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
[Crossref]

A. V. Zea, J. F. Barrera Ramirez, and R. Torroba, “Optimized random phase only holograms,” Opt. Lett. 43(4), 731 (2018).
[Crossref]

A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Three-dimensional joint transform correlator cryptosystem,” Opt. Lett. 41(3), 599 (2016).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

Toyooka, S.

H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
[Crossref]

Trejos, S.

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

Turner, S. R.

Velez, A.

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

Walkup, J. F.

Waller, L.

Wang, H.-T.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Welch, T. A.

T. A. Welch, “A Technique for High-Performance Data Compression,” Computer 17(6), 8–19 (1984).
[Crossref]

Xu, J.

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

Yamaguchi, I.

Zea, A. V.

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
[Crossref]

A. V. Zea, J. F. Barrera Ramirez, and R. Torroba, “Optimized random phase only holograms,” Opt. Lett. 43(4), 731 (2018).
[Crossref]

A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Three-dimensional joint transform correlator cryptosystem,” Opt. Lett. 41(3), 599 (2016).
[Crossref]

Zhang, J.

Zhong, J.

Ziv, J.

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory 23(3), 337–343 (1977).
[Crossref]

Appl. Opt. (7)

Computer (1)

T. A. Welch, “A Technique for High-Performance Data Compression,” Computer 17(6), 8–19 (1984).
[Crossref]

Front. Neural Circuits (1)

V. Nikolenko, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 1–14 (2008).
[Crossref]

IEEE Trans. Inf. Theory (1)

J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory 23(3), 337–343 (1977).
[Crossref]

J. Opt. (2)

H. Chen, Y. Guo, Z. Chen, J. Hao, J. Xu, H.-T. Wang, and J. Ding, “Holographic optical tweezers obtained by using the three-dimensional Gerchberg–Saxton algorithm,” J. Opt. 15(3), 035401 (2013).
[Crossref]

A. Velez, J. F. Barrera, S. Trejos, M. Tebaldi, and R. Torroba, “Optical field data compression by opto-digital means,” J. Opt. 18(12), 125701 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Nat. Methods (1)

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (3)

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Lasers Eng. 100, 90–97 (2018).
[Crossref]

S. Trejos, J. F. B. Ramirez, A. V. Zea, M. Tebaldi, and R. Torroba, “Compression of multiple 3D color scenes with experimental recording and reconstruction,” Opt. Lasers Eng. 110, 18–23 (2018).
[Crossref]

H. Kadono, H. Takei, and S. Toyooka, “A noise-immune method of phase unwrapping in speckle interferometry,” Opt. Lasers Eng. 26(2–3), 151–164 (1997).
[Crossref]

Opt. Lett. (4)

Optica (1)

Proc. IEEE (1)

A. H. Robinson and C. Cherry, “Results of a Prototype Television Bandwidth Compression Scheme,” Proc. IEEE 55(3), 356–364 (1967).
[Crossref]

Proc. IRE (1)

D. A. Huffman, “A Method for the Construction of Minimum-Redundance Codes,” Proc. IRE 40(9), 1098–1101 (1952).
[Crossref]

Signal Process. Image Commun. (1)

D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, and P. Schelkens, “Signal processing challenges for digital holographic video display systems,” Signal Process. Image Commun. 70, 114–130 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Scheme of the off-axis Fourier holographic setup. (CS: collimation system, BS: Beam splitter, M: mirror).
Fig. 2.
Fig. 2. a) amplitude, and b) phase of the optical field of the object in the hologram plane. c) reconstructed object using both a) and b). d) reconstructed object from a), e) reconstructed object from b).
Fig. 3.
Fig. 3. Histogram of the phase and amplitude values of the optical field.
Fig. 4.
Fig. 4. a) resulting APR obtained from the phase of Fig. 2b. b) histogram of a).
Fig. 5.
Fig. 5. a) Entropy of the APR as a function of the allowed range, b) correlation coefficient between the reconstructed object from the original phase and the object obtained from the APRs, as a function of the allowed range.
Fig. 6.
Fig. 6. Compression ratio of the APR with different ranges when applying the DEFLATE, LZW, and PACKBITS algorithms.
Fig. 7.
Fig. 7. Scheme for experimental reconstruction of objects from phase only data (M: mirror, BS: beam splitter, L: lens, SLM: spatial light modulator).
Fig. 8.
Fig. 8. Reconstructed objects from the original phase and the DEFLATE compressed APR with range $50\pi $ .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H ( v , w ) = | O ( v , w ) | 2 + | P ( v , w ) | 2 + O ( v , w ) P ( v , w ) + O ( v , w ) P ( v , w )
h ( x , y ) = o ( x , y ) o ( x , y ) + p ( x , y ) p ( x , y ) + o ( x , y ) δ ( x f cos α , y f cos β ) + o ( x , y ) δ ( x + f cos α , y + f cos β )
S = i = 1 256 p i log 2 ( p i )
O ( v , w ) = A ( v , w ) e i ϕ ( v , w )
e i ϕ ( v , w ) = e i ϕ a ( v , w )
C = V i V f

Metrics