M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]
H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]
J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]
Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]
O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]
A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]
Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]
U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]
O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]
J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]
Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]
O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]
A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]
S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]
Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]
Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]
T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]
S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]
Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]
M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]
C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]
W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]
Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]
Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]
D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]
D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]
R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]
O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]
A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]
T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]
J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]
K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]
A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]
S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]
H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]
M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]
J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]
M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]
M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]
R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]
A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]
U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]
D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]
V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]
Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]
S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]
M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]
S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]
T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]
J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]
C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]