Abstract

We have theoretically proposed electrical modulation and enhancement of Fano resonance in THz metamaterials. In order to practically realize Fano resonance based devices, resonance dips should be sharp and to be clearly detected. However, realization of Fano resonances with simultaneously high quality factor (Q) and higher spectral contrast remains a major challenge. Therefore we propose a metamaterial based device to overcome the above limitation with active tuning capability. Our simulated results show a large enhancement of surface current and electric field, which results in sharp, extremely narrow bandwidth Fano type resonances. Furthermore, a higher degree of tunability has been achieved for Fano resonance as compared to dipole resonance, which can be useful to realize advanced dynamically reconfigurable devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sharp Fano resonances in THz metamaterials

Ranjan Singh, Ibraheem A. I. Al-Naib, Martin Koch, and Weili Zhang
Opt. Express 19(7) 6312-6319 (2011)

Flexible properties of THz graphene bowtie metamaterials structures

Xiaoyong He, Guina Xiao, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Mater. Express 9(1) 44-55 (2019)

Dual-wavelength terahertz sensing based on anisotropic Fano resonance metamaterials

Yuying Lu, Maosheng Yang, Zhang Zhang, Lanju Liang, Jining Li, and Jianquan Yao
Appl. Opt. 58(7) 1667-1674 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref]
  4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  5. M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
    [Crossref]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  7. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref]
  8. A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
    [Crossref]
  9. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [Crossref]
  10. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
    [Crossref]
  11. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  12. U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref]
  14. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  15. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref]
  16. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  17. A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
    [Crossref]
  18. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
    [Crossref]
  19. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
    [Crossref]
  20. W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
    [Crossref]
  21. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
    [Crossref]
  22. C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
    [Crossref]
  23. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
    [Crossref]
  24. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
    [Crossref]
  25. D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
    [Crossref]
  26. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
    [Crossref]
  27. S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
    [Crossref]
  28. T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
    [Crossref]
  29. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
    [Crossref]
  30. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
    [Crossref]
  31. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
    [Crossref]
  32. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
    [Crossref]
  33. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref]
  34. Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
    [Crossref]
  35. T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
    [Crossref]
  36. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
    [Crossref]
  37. J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
    [Crossref]
  38. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [Crossref]
  39. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  40. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
    [Crossref]
  41. O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
    [Crossref]
  42. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [Crossref]
  43. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
    [Crossref]

2018 (6)

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

2017 (5)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (5)

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

2015 (4)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

2014 (1)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (2)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

2012 (1)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

2011 (5)

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

2010 (1)

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

2009 (1)

2008 (3)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2007 (3)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

2006 (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

1961 (1)

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Agarwal, K.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Agrawal, G. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Al-Naib, I.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Atwater, H. A.

Aydin, K.

Azad, A. K.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Barh, A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Boyd, E. M.

Brevet, P.-F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Cao, T.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chen, H. T.

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Cheng, L.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Cho, J-H

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Cho, O.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Choi, H.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Cong, L.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Del Fatti, N.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Dicken, M. J.

Fano, U.

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Han, S.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Holden, A.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Islam, M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Ji, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Jiang, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Khanikaev, A. B.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kim, H.

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

Kisel, V. N.

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Koch, M.

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Kumar, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Kumar, G.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Lagarkov, A. N.

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Lai, K. L.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Lee, C.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Lim, W. X.

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Ling, F.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Liu, A. Q.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Liu, C.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Liu, H.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Lu, J.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Ma, J.

Manjappa, M.

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Mao, L.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Menat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Miroshnichenko, A. E.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Nesimoglu, T.

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

O’Hara, J. F.

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Pal, B. P.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Pitchappa, P.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Pryce, I. M.

Rahman, B. M. A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Rao, S. J. M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Robbins, D.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Roy Chowdhury, D.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sabah, C.

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Savinov, V.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Shvets, G.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Singh, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Singh, R.

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Stewart, W.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Sweatlock, L. A.

Taylor, A. J.

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Tsai, D. P.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Vallée, F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

Varshney, R. K.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Walavalkar, S.

Wang, B.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, C. M.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Wang, T.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, X. R.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Wang, Y.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

Wei, C.

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, C.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Wu, S. R.

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

Xiao, B.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Xiao, S.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Xu, C.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Xu, N.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Yan, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Yang, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yao, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Yin, J.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Yuan, G.

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Zhang, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, Y.

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

Zheludev, N. I.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Zhou, S.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Zhu, W. M.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Adv Opt. Mater. (1)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Adv. Mater. (2)

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref]

Adv. Opt. Mater. (3)

C. Liu, K. Agarwal, Y. Zhang, D. Roy Chowdhury, A. K. Azad, and J-H Cho, “Terahertz Metamaterials: Displacement Current Mediated Resonances in Terahertz Metamaterials,” Adv. Opt. Mater. 4(8), 1302–1309 (2016).
[Crossref]

W. X. Lim, M. Manjappa, P. Pitchappa, and R. Singh, “Shaping High-Q Planar Fano Resonant Metamaterials toward Futuristic Technologies,” Adv. Opt. Mater. 6(19), 1800502 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Appl. Phys. A (1)

Y. Wang, J. Yin, and G. Yuan, “Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna,” Appl. Phys. A 104(4), 1243–1247 (2011).
[Crossref]

Appl. Phys. Lett. (5)

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H. T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Electron. Lett. (1)

O. Cho, H. Choi, and H. Kim, “Loop-type ground antenna using capacitor,” Electron. Lett. 47(1), 11–12 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty Fibers for Terahertz Generation and Transmission: A Review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

IEEE Trans. Circuits Syst. II (1)

T. Nesimoglu and C. Sabah, “A Tunable Metamaterial Resonator Using Varactor Diodes to Facilitate the Design of Reconfigurable Microwave Circuits,” IEEE Trans. Circuits Syst. II 63(1), 89–93 (2016).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (1)

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

J. Opt. (1)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Nanophotonics (1)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247 (2013).
[Crossref]

Nanotechnology (1)

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Nat. Commun. (1)

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref]

Nat. Photonics (2)

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Opt. Express (2)

Phys. B (1)

A. N. Lagarkov and V. N. Kisel, “Losses in metamaterials: Restrictions and benefits,” Phys. B 405(14), 2925–2929 (2010).
[Crossref]

Phys. Rev. (1)

U. Fano, “Effect of Configuration interactions on Intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Phys. Rev. Lett. (4)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Menat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Sci. Rep. (5)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. Roy Chowdhury, “Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

S. R. Wu, K. L. Lai, and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8(1), 7684 (2018).
[Crossref]

T. Cao, C. Wei, and L. Mao, “Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism,” Sci. Rep. 5, 14666 (2015).
[Crossref]

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref]

Science (2)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Sov Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of (a) Unit cell of proposed metamaterial structure with typical dimensions ls = 75 μm, lsrr = 60 μm, w = 6 μm, ${G_1}$ = ${G_2}$ = 3 μm, (b) periodic stack of the proposed structure where external capacitor is introduced only in the lower gap.
Fig. 2.
Fig. 2. (a) Variation of amplitude transmission with frequency when external capacitor is loaded in lower gap of the resonator (red curve) and resonator without external capacitor (black curve) for d = 20 μm. Fano dip at f = 1.2 THz (single capacitor in lower gap) and f = 1.28 THz (no capacitor). Surface current distribution at (b) dipole dip for f = 0.98 THz, (c) EIT peak for f = 1.1 THz, (d) Fano dip for f = 1.28 THz when no capacitor is loaded with the resonator (e) Fano dip for f = 1.2 THz ($\; {C_1} = 0.5\; fF$ loaded at lower split gap).
Fig. 3.
Fig. 3. (a) Amplitude transmission spectra for different asymmetry (d) with $\; {C_1}$ = 0.5 fF (b) Variation of Q-factor and FOM of Fano dip for different values of asymmetric parameter (d) with $\; {C_1}$ of 0.5 fF loaded in the lower gap.
Fig. 4.
Fig. 4. Capacitive tuning of Amplitude Transmission vs frequency spectra for (a) d = 10 μm, (b) d = 20 μm with external capacitor in lower gap only. (c) Resonant dip tuning of various resonance with different capacitor values for d = 10 μm, (d) Electric field distribution at Fano resonant frequency (1.167 THz) for ${C_1}$ = 0.5 fF, (e) Variation of Q-factor and FOM of Fano dip for different values of external capacitor ${C_1}$ and ${C_2}$ for d = 20 μm.
Fig. 5.
Fig. 5. (a) Spectral Contrast of Fano dip for d = 20 μm and different values of$\; {C_1}$, (b) Far field radiation pattern corresponding to d = 20 μm and$\; {C_1}$ = 0.5, 1, and 5 fF.
Fig. 6.
Fig. 6. Capacitive tuning of Amplitude Transmission spectra for d = 10 μm: analytical modelling using Matlab.

Tables (1)

Tables Icon

Table 1. Parameters for theoretical fit for d = 10 μm and various values of C1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ ( Ω ) = D 2 | ( ( q + Ω ) 2 / ( 1 + Ω 2 ) ) κ + ( 1 κ ) |
x ¨ 1 + γ 1 x ˙ 1 + ω 0 2 x 1 + Ω x 2 = g E x ¨ 2 + γ 2 x ˙ 2 + ( ω 0 + δ ) 2 x 2 + Ω x 1 = 0
a 1 = F 2 g / ( F 1 ( F 2 Ω 2 ) a 2 = Ω g / ( F 1 ( F 2 Ω 2 )
Factor 1: F 1 = ( ω 1 2 ω 2 + i γ 1 ω )  and Factor 2: F 2 = ( ( ω 1 + δ ) 2 ω 2 + i γ 2 ω )
T ( ω ) = 1 | F 2 g / ( F 1 ( F 2 Ω 2 ) | 2
(i) ( ω 0 + δ ) 2 ω 0 2 Ω (ii) ω 0 2 ω 2 2 ω 0 ( ω ω 0 )
Factor 3: F 3 = ( ω ω 0 + i γ 1 / 2 )  and Factor 4: F 4 = ( ω ω 0 δ + i γ 2 / 2 )
T ( ω ) 1 R e { i g 2 F 4 / ( F 3 F 4 Ω 2 / 4 ) }

Metrics