Abstract

Speckle noise is a serious problem for laser projectors because it deteriorates the image quality. The brightness of the image is one of the important parameters to determining the speckle perception. In this paper, the effect of brightness on speckle contrast is investigated using matte and silver screens for cinema. The brightness was changed by using ND filters or changing the on-and-off duty cycle of a DMD device in a digital cinema projector. It is shown that the brightness does not affect the speckle contrast measured by a CCD camera. Then, the effect of the brightness on human speckle perception is investigated. It is shown that the brightness of the image significantly affects human speckle perception. Speckle patterns created by the image with higher brightness are more noticeable than those with lower brightness when the speckle contrast measured by a camera is the same.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Human speckle perception threshold for still images from a laser projection system

Stijn Roelandt, Youri Meuret, An Jacobs, Koen Willaert, Peter Janssens, Hugo Thienpont, and Guy Verschaffelt
Opt. Express 22(20) 23965-23979 (2014)

Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems

Hirotaka Yamada, Kengo Moriyasu, Hiroto Sato, and Hidekazu Hatanaka
Opt. Express 25(25) 32132-32141 (2017)

Standardized speckle measurement method matched to human speckle perception in laser projection systems

Stijn Roelandt, Youri Meuret, Gordon Craggs, Guy Verschaffelt, Peter Janssens, and Hugo Thienpont
Opt. Express 20(8) 8770-8783 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [Crossref]
  2. M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).
  3. Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
    [Crossref]
  4. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref]
  5. S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Opt. Express 22(20), 23965 (2014).
    [Crossref]
  6. G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
    [Crossref]
  7. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).
  8. H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems,” Opt. Express 25(25), 32132–32141 (2017).
    [Crossref]
  9. T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).
  10. K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
    [Crossref]
  11. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20(8), 8770–8783 (2012).
    [Crossref]
  12. K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
    [Crossref]
  13. J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
    [Crossref]
  14. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [Crossref]
  15. T.-T.-K. Tran, Ø. Svensen, X. Chen, and M. Nadeem Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
    [Crossref]
  16. S. Kubota, “Simulating the human eye in measurements of speckle from laser-based projection displays,” Appl. Opt. 53(17), 3814–3820 (2014).
    [Crossref]
  17. H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
    [Crossref]
  18. K. Suzuki and S. Kubota, “Understanding the exposure-time effect on speckle contrast measurements for laser displays,” Opt. Rev. 25(1), 131–139 (2018).
    [Crossref]
  19. H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Theoretical calculation and experimental investigation of speckle reduction by multiple wavelength lasers in laser projector with different angular diversities.”
  20. H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Speckle reduction in laser projectors by angular, wavelength, and polarization diversity.”
  21. J. Pokorny and V. C. Smith, “How much light reaches the retina?” in Colour Vision Deficiencies XIII. Documenta Ophthalmologica Proceedings Series, Vol 59, C. R. Cavonius, ed. (Springer, Dordrecht, 1997).

2018 (3)

J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
[Crossref]

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

K. Suzuki and S. Kubota, “Understanding the exposure-time effect on speckle contrast measurements for laser displays,” Opt. Rev. 25(1), 131–139 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (1)

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

2014 (4)

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Opt. Express 22(20), 23965 (2014).
[Crossref]

S. Kubota, “Simulating the human eye in measurements of speckle from laser-based projection displays,” Appl. Opt. 53(17), 3814–3820 (2014).
[Crossref]

2012 (2)

2008 (1)

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[Crossref]

Ayama, M.

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

Brennesholtz, M. S.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Chen, X.

Craggs, G.

Fukui, T.

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Furukawa, Y.

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Goodman, J. W.

Hatanaka, H.

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems,” Opt. Express 25(25), 32132–32141 (2017).
[Crossref]

Ishikawa, T.

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

Ito, K.

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Jacobs, A.

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

S. Roelandt, Y. Meuret, A. Jacobs, K. Willaert, P. Janssens, H. Thienpont, and G. Verschaffelt, “Human speckle perception threshold for still images from a laser projection system,” Opt. Express 22(20), 23965 (2014).
[Crossref]

Janssens, P.

Kilpi, K.

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

Kinoshita, J.

J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
[Crossref]

Kubota, S.

K. Suzuki and S. Kubota, “Understanding the exposure-time effect on speckle contrast measurements for laser displays,” Opt. Rev. 25(1), 131–139 (2018).
[Crossref]

S. Kubota, “Simulating the human eye in measurements of speckle from laser-based projection displays,” Appl. Opt. 53(17), 3814–3820 (2014).
[Crossref]

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Kuroda, K.

J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
[Crossref]

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

Lee, D. U.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Lee, S. G.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Lee, Y. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Lievens, B.

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

Manni, J. G.

Meuret, Y.

Moriyasu, K.

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems,” Opt. Express 25(25), 32132–32141 (2017).
[Crossref]

Nadeem Akram, M.

Park, J. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Park, S. Y.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Pokorny, J.

J. Pokorny and V. C. Smith, “How much light reaches the retina?” in Colour Vision Deficiencies XIII. Documenta Ophthalmologica Proceedings Series, Vol 59, C. R. Cavonius, ed. (Springer, Dordrecht, 1997).

Roelandt, S.

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[Crossref]

Sato, H.

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems,” Opt. Express 25(25), 32132–32141 (2017).
[Crossref]

Smith, V. C.

J. Pokorny and V. C. Smith, “How much light reaches the retina?” in Colour Vision Deficiencies XIII. Documenta Ophthalmologica Proceedings Series, Vol 59, C. R. Cavonius, ed. (Springer, Dordrecht, 1997).

Stupp, E. H.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Suzuki, K.

K. Suzuki and S. Kubota, “Understanding the exposure-time effect on speckle contrast measurements for laser displays,” Opt. Rev. 25(1), 131–139 (2018).
[Crossref]

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Svensen, Ø.

Thienpont, H.

Tokita, H.

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Tran, T.-T.-K.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

Van Den Broeck, W.

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

Verschaffelt, G.

Willaert, K.

Williams, D. R.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[Crossref]

Yamada, H.

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems,” Opt. Express 25(25), 32132–32141 (2017).
[Crossref]

H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Theoretical calculation and experimental investigation of speckle reduction by multiple wavelength lasers in laser projector with different angular diversities.”

H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Speckle reduction in laser projectors by angular, wavelength, and polarization diversity.”

Yamamoto, K.

J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
[Crossref]

Appl. Opt. (2)

J. Soc. Inf. Disp. (1)

H. Yamada, K. Moriyasu, H. Sato, and H. Hatanaka, “Dependency of speckle reduction by wavelength diversity on angular diversity in laser projection system,” J. Soc. Inf. Disp. 26(4), 237–245 (2018).
[Crossref]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[Crossref]

Opt. Express (4)

Opt. Rev. (4)

K. Kuroda, T. Ishikawa, M. Ayama, and S. Kubota, “Color Speckle,” Opt. Rev. 21(1), 83–89 (2014).
[Crossref]

J. Kinoshita, K. Yamamoto, and K. Kuroda, “Color speckle measurement errors using system with XYZ filters,” Opt. Rev. 25(1), 123–130 (2018).
[Crossref]

K. Suzuki, T. Fukui, S. Kubota, and Y. Furukawa, “Verification of speckle contrast measurement interrelation with observation distance,” Opt. Rev. 21(1), 94–97 (2014).
[Crossref]

K. Suzuki and S. Kubota, “Understanding the exposure-time effect on speckle contrast measurements for laser displays,” Opt. Rev. 25(1), 131–139 (2018).
[Crossref]

Proc. SPIE (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

Sci. Rep. (1)

G. Verschaffelt, S. Roelandt, Y. Meuret, W. Van Den Broeck, K. Kilpi, B. Lievens, A. Jacobs, P. Janssens, and H. Thienpont, “Speckle disturbance limit in laser-based cinema projection systems,” Sci. Rep. 5(1), 14105 (2015).
[Crossref]

SID Symp. Dig. Tech. Pap. (1)

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A Study on the Relationships between Human Perception and the Physical Phenomenon of Speckle,” SID Symp. Dig. Tech. Pap. 39(1), 1347 (2008).
[Crossref]

Other (6)

H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Theoretical calculation and experimental investigation of speckle reduction by multiple wavelength lasers in laser projector with different angular diversities.”

H. Yamada, Ushio inc., 1194 Sazuchi, Bessho-cho, Himeji, Hyogo 675–0224, Japan, K. Moriyasu, H. Sato, H. Hatanaka, and Y. Kazuhisa are preparing a manuscript to be called “Speckle reduction in laser projectors by angular, wavelength, and polarization diversity.”

J. Pokorny and V. C. Smith, “How much light reaches the retina?” in Colour Vision Deficiencies XIII. Documenta Ophthalmologica Proceedings Series, Vol 59, C. R. Cavonius, ed. (Springer, Dordrecht, 1997).

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, 2007).

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

T. Fukui, K. Ito, K. Suzuki, H. Tokita, Y. Furukawa, and S. Kubota, “Effective Calibration Method for Absolute Speckle Contrast Measurement,” Proc. LDC LDC8-3 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Tabletop experimental setup.
Fig. 2.
Fig. 2. Schematic diagram of an experimental setup with a DLP projector.
Fig. 3.
Fig. 3. Speckle contrast with different ND filters.
Fig. 4.
Fig. 4. Test patterns preset in the projector. (a) Test pattern with 100% brightness; and (b) test pattern with 20% brightness. Both test patterns have no spatial patterns and create rectangular images with uniform brightness.
Fig. 5.
Fig. 5. Speckle contrast with different brightness by changing on-and-off duty cycle of the DMD device.
Fig. 6.
Fig. 6. The distance from which speckle cannot be perceived; (a) low luminance; and (b) high luminance.
Fig. 7.
Fig. 7. The speckle evaluation results on a four level scale (1. very annoying, 2. annoying, 3 visible, but acceptable, 4 imperceptible) at 4 m apart from the screen. (a) low luminance; and (b) high luminance.
Fig. 8.
Fig. 8. Speckle size on CCD camera’s pixels for various camera aperture diameter.

Tables (5)

Tables Icon

Table 1. List of wavelengths of lasers

Tables Icon

Table 2. Conditions of the speckle measurement system

Tables Icon

Table 3. Measured speckle contrast

Tables Icon

Table 4. Participant attributes of the sensory test

Tables Icon

Table 5. Illumination conditions of sensory test

Metrics