Abstract

We generalize the theory of ghost scattering with scalar incoherent light sources to the case of stochastic electromagnetic beams under the first-order Born approximation. We derive the expressions for the correlation of intensity fluctuations of the far-zone scattered fields and use them to study the properties of the scatterers. When the incident beam belongs to the class of electromagnetic Gaussian Schell-model beams, we discuss the dependence of ghost scattering results on the parameters such as the coherence lengths, source widths, polarization amplitudes, and degree of coherence. We find under the condition of linear polarized incident beams the scalar ghost scattering results can be retrieved, while the deviation from linear polarization may significantly distort the electromagnetic ghost scattering results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between intensity fluctuations of light scattered from a quasi-homogeneous random media

Yu Xin, Yingjun He, Yanru Chen, and Jia Li
Opt. Lett. 35(23) 4000-4002 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhao and T. Wang, “Direct and Inverse Problems in the Theory of Light Scattering,” In E. Wolf ed., Progress in Optics, Vol. 57, 261–308 (Elsevier, 2012).
  2. M. Born and E. Wolf, Principles of Optics, Ch. 13, (Cambridge University Press, 1999).
  3. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, (John Wiley and Sons, 2000).
  4. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small particles, (Cambridge University Press, 2002).
  5. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed. (Springer-Verlag, 2006).
  6. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  7. R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
    [Crossref]
  8. J. Holoubek, “Some applications of light scattering in materials science,” J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 104–121 (2007).
    [Crossref]
  9. M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
    [Crossref]
  10. J. M. Geffrin and et al., “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
    [Crossref]
  11. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
    [Crossref]
  13. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref]
  14. B. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  15. J. Cheng, “Theory of ghost scattering with incoherent light,” Phys. Rev. A 93(4), 043808 (2016).
    [Crossref]
  16. J. Cheng, “Theory of ghost scattering with biphoton states,” Photon. Res. 5(1), 41–45 (2017).
    [Crossref]
  17. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2(4), 405–450 (2010), and references therein.
    [Crossref]
  18. J. Cheng and S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
    [Crossref]
  19. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref]
  20. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref]
  21. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
    [Crossref]
  22. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
    [Crossref]
  23. G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
    [Crossref]
  24. L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
    [Crossref]
  25. M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
    [Crossref]
  26. J. Cheng and S. Han, “Classical correlated imaging from the perspective of coherent-mode representation,” Phys. Rev. A 76(2), 023824 (2007).
    [Crossref]
  27. J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78(4), 043823 (2008).
    [Crossref]
  28. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A,  77(4), 043809 (2008).
    [Crossref]
  29. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
    [Crossref]
  30. Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  31. M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
    [Crossref]
  32. C. L. Luo and J. Cheng, “Ghost imaging with shaped incoherent sources,” Opt. Lett. 38(24), 5381 (2013).
    [Crossref]
  33. C. L. Luo, H. H. Xu, and J. Cheng, “High-resolution ghost imaging experiments with cosh-Gaussian modulated incoherent sources,” J. Opt. Soc. Am. A 32(3), 482–485 (2015).
    [Crossref]
  34. D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
    [Crossref]
  35. H. Yu, E. R. Li, W. L. Gong, and S. S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).
    [Crossref]
  36. M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40(19), 4464–4467 (2015).
    [Crossref]
  37. L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform,” Photon. Res. 4(6), 240–244 (2016).
    [Crossref]
  38. Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
    [Crossref]
  39. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
    [Crossref]
  40. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
    [Crossref]
  41. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 063824 (2011).
    [Crossref]
  42. P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).
  43. R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
    [Crossref]
  44. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  45. J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87(4), 043810 (2013).
    [Crossref]
  46. D. Duan and Y. J. Xia, “Real-time pseudocolor coding thermal ghost imaging,” J. Opt. Soc. Am. A 31(1), 183 (2014).
    [Crossref]
  47. H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
    [Crossref]
  48. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
    [Crossref]
  49. Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
    [Crossref]
  50. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).
  51. O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E,  75(5), 056609 (2007).
    [Crossref]
  52. S. Sahin and O Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34(12), 1762–1764 (2009).
    [Crossref]
  53. Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A,  82(3), 033836 (2010).
    [Crossref]
  54. T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
    [Crossref]
  55. Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
    [Crossref]
  56. X. Wang, Z. Liu, K. Huang, and D. Zhu, “Spectral changes of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry scattered on a deterministic medium,” J. Opt. Soc. Am. A 33(10), 1955–1960 (2016).
    [Crossref]
  57. X. Chen and O. Korotkova, “Probability density functions of instantaneous Stokes parameters on weak scattering,” Opt. Commun. 400, 1–8 (2017).
    [Crossref]
  58. Y. Ding and D. Zhao, “Correlation between intensity fluctuations of polychromatic electromagnetic light waves on weak scattering,” Phys. Rev. A 97(2), 023837 (2018).
    [Crossref]
  59. X. Peng, J. Li, and L. Chang, “Evolution properties of polarization states of far-zone electromagnetic field scattered from an anisotropic medium,” Opt. Express 26(6), 6679–6691 (2018).
    [Crossref]
  60. Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
    [Crossref]

2018 (3)

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Y. Ding and D. Zhao, “Correlation between intensity fluctuations of polychromatic electromagnetic light waves on weak scattering,” Phys. Rev. A 97(2), 023837 (2018).
[Crossref]

X. Peng, J. Li, and L. Chang, “Evolution properties of polarization states of far-zone electromagnetic field scattered from an anisotropic medium,” Opt. Express 26(6), 6679–6691 (2018).
[Crossref]

2017 (3)

J. Cheng, “Theory of ghost scattering with biphoton states,” Photon. Res. 5(1), 41–45 (2017).
[Crossref]

X. Chen and O. Korotkova, “Probability density functions of instantaneous Stokes parameters on weak scattering,” Opt. Commun. 400, 1–8 (2017).
[Crossref]

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

2016 (5)

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

J. Cheng, “Theory of ghost scattering with incoherent light,” Phys. Rev. A 93(4), 043808 (2016).
[Crossref]

X. Wang, Z. Liu, K. Huang, and D. Zhu, “Spectral changes of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry scattered on a deterministic medium,” J. Opt. Soc. Am. A 33(10), 1955–1960 (2016).
[Crossref]

L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform,” Photon. Res. 4(6), 240–244 (2016).
[Crossref]

2015 (6)

C. L. Luo, H. H. Xu, and J. Cheng, “High-resolution ghost imaging experiments with cosh-Gaussian modulated incoherent sources,” J. Opt. Soc. Am. A 32(3), 482–485 (2015).
[Crossref]

H. Yu, E. R. Li, W. L. Gong, and S. S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).
[Crossref]

M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40(19), 4464–4467 (2015).
[Crossref]

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

2014 (2)

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

D. Duan and Y. J. Xia, “Real-time pseudocolor coding thermal ghost imaging,” J. Opt. Soc. Am. A 31(1), 183 (2014).
[Crossref]

2013 (5)

C. L. Luo and J. Cheng, “Ghost imaging with shaped incoherent sources,” Opt. Lett. 38(24), 5381 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87(4), 043810 (2013).
[Crossref]

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

2012 (2)

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

J. M. Geffrin and et al., “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

2011 (2)

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 063824 (2011).
[Crossref]

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

2010 (4)

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A,  82(3), 033836 (2010).
[Crossref]

Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
[Crossref]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2(4), 405–450 (2010), and references therein.
[Crossref]

2009 (4)

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
[Crossref]

S. Sahin and O Korotkova, “Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation,” Opt. Lett. 34(12), 1762–1764 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

2008 (3)

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78(4), 043823 (2008).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A,  77(4), 043809 (2008).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
[Crossref]

2007 (4)

O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E,  75(5), 056609 (2007).
[Crossref]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

J. Cheng and S. Han, “Classical correlated imaging from the perspective of coherent-mode representation,” Phys. Rev. A 76(2), 023824 (2007).
[Crossref]

J. Holoubek, “Some applications of light scattering in materials science,” J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 104–121 (2007).
[Crossref]

2006 (3)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
[Crossref]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

2005 (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref]

2004 (2)

J. Cheng and S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

1988 (1)

B. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Akhlaghi, M. I.

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bai, Y.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Basano, L.

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
[Crossref]

Body, R. W.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Born, M.

M. Born and E. Wolf, Principles of Optics, Ch. 13, (Cambridge University Press, 1999).

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Cai, Y.

Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
[Crossref]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Chan, K. W.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Chang, L.

Chen, X.

X. Chen and O. Korotkova, “Probability density functions of instantaneous Stokes parameters on weak scattering,” Opt. Commun. 400, 1–8 (2017).
[Crossref]

Chen, X. H.

Cheng, J.

J. Cheng, “Theory of ghost scattering with biphoton states,” Photon. Res. 5(1), 41–45 (2017).
[Crossref]

J. Cheng, “Theory of ghost scattering with incoherent light,” Phys. Rev. A 93(4), 043808 (2016).
[Crossref]

C. L. Luo, H. H. Xu, and J. Cheng, “High-resolution ghost imaging experiments with cosh-Gaussian modulated incoherent sources,” J. Opt. Soc. Am. A 32(3), 482–485 (2015).
[Crossref]

C. L. Luo and J. Cheng, “Ghost imaging with shaped incoherent sources,” Opt. Lett. 38(24), 5381 (2013).
[Crossref]

J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87(4), 043810 (2013).
[Crossref]

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916–7921 (2009).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78(4), 043823 (2008).
[Crossref]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

J. Cheng and S. Han, “Classical correlated imaging from the perspective of coherent-mode representation,” Phys. Rev. A 76(2), 023824 (2007).
[Crossref]

J. Cheng and S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
[Crossref]

Ding, K.-H.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, (John Wiley and Sons, 2000).

Ding, Y.

Y. Ding and D. Zhao, “Correlation between intensity fluctuations of polychromatic electromagnetic light waves on weak scattering,” Phys. Rev. A 97(2), 023837 (2018).
[Crossref]

Dixon, P. B.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Dogariu, A.

Draine, B.

B. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Du, G. H.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Duan, D.

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2(4), 405–450 (2010), and references therein.
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A,  77(4), 043809 (2008).
[Crossref]

Fan, H.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Fu, X.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Fukatsu, S.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Geffrin, J. M.

J. M. Geffrin and et al., “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Gong, W. L.

Han, S.

J. Cheng and S. Han, “Classical correlated imaging from the perspective of coherent-mode representation,” Phys. Rev. A 76(2), 023824 (2007).
[Crossref]

J. Cheng and S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

Han, S. S

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Han, S. S.

H. Yu, E. R. Li, W. L. Gong, and S. S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).
[Crossref]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Hardy, N. D.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 063824 (2011).
[Crossref]

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Holoubek, J.

J. Holoubek, “Some applications of light scattering in materials science,” J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 104–121 (2007).
[Crossref]

Howell, J. C.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Howland, G.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Huang, K.

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

Kahnert, M.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

Kong, J. A.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, (John Wiley and Sons, 2000).

Korotkova, O

Korotkova, O.

X. Chen and O. Korotkova, “Probability density functions of instantaneous Stokes parameters on weak scattering,” Opt. Commun. 400, 1–8 (2017).
[Crossref]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A,  82(3), 033836 (2010).
[Crossref]

Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
[Crossref]

O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E,  75(5), 056609 (2007).
[Crossref]

Kuebel, D.

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small particles, (Cambridge University Press, 2002).

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

Li, E. R.

Li, H.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Li, H. G.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Li, J.

Li, M. F.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

Lin, J.

J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87(4), 043810 (2013).
[Crossref]

Lindqvist, H.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

Liu, H. L.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Liu, Y. F.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Liu, Z.

Lu, R. H.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Luo, C. L.

Luo, K. H.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small particles, (Cambridge University Press, 2002).

Nan, S.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Nousiainen, T.

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

O’Sullivan-Hale, M. N.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

O-oka, Y.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Ottonello, P.

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Paganini, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Peng, X.

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Qu, L.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Rodenburg, B.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Saenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Sahin, S.

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Sergienko, A. V.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Shapiro, J. H.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 063824 (2011).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2(4), 405–450 (2010), and references therein.
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A,  77(4), 043809 (2008).
[Crossref]

Shaprio, J. H.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Shen, Q.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Shen, X.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Sheng, P.

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed. (Springer-Verlag, 2006).

Shi, X.

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Shih, Y.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Shih, Y. H.

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Simon, D. S.

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Tong, Z.

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A,  82(3), 033836 (2010).
[Crossref]

Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small particles, (Cambridge University Press, 2002).

Tsang, L.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, (John Wiley and Sons, 2000).

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

Visser, T. D.

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wang, H. B.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Wang, K. G.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Wang, L.

Wang, S.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Wang, T.

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref]

D. Zhao and T. Wang, “Direct and Inverse Problems in the Theory of Light Scattering,” In E. Wolf ed., Progress in Optics, Vol. 57, 261–308 (Elsevier, 2012).

Wang, X.

Wang, Y.

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

Wei, Q.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Wolf, E.

O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E,  75(5), 056609 (2007).
[Crossref]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

M. Born and E. Wolf, Principles of Optics, Ch. 13, (Cambridge University Press, 1999).

Wu, L. A.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref]

Xia, Y. J.

Xiao, T. Q.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xie, H. L.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xiong, J.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Xu, H. H.

Xu, R.

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

Yan, S.

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

Yu, H.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

H. Yu, E. R. Li, W. L. Gong, and S. S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).
[Crossref]

Zhai, Y. H.

Zhang, D.

Zhang, D. J.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Zhang, M. H.

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

Zhang, Y. R.

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

Zhao, D.

Y. Ding and D. Zhao, “Correlation between intensity fluctuations of polychromatic electromagnetic light waves on weak scattering,” Phys. Rev. A 97(2), 023837 (2018).
[Crossref]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref]

D. Zhao and T. Wang, “Direct and Inverse Problems in the Theory of Light Scattering,” In E. Wolf ed., Progress in Optics, Vol. 57, 261–308 (Elsevier, 2012).

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

Zhao, Q. L.

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

Zhao, S. M.

Zhu, D.

Zhu, D. M.

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (5)

G. Scarcelli, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88(6), 061106 (2006).
[Crossref]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100(13), 131114 (2012).
[Crossref]

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Astrophys. J. (1)

B. Draine, “Discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B,  107(3), 668–677 (2003).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

J. Holoubek, “Some applications of light scattering in materials science,” J. Quant. Spectrosc. Radiat. Transfer 106(1–3), 104–121 (2007).
[Crossref]

M. Kahnert, T. Nousiainen, and H. Lindqvist, “Review: Model particles in atmospheric optics,” J. Quant. Spectrosc. Radiat. Transfer 146, 41–58 (2014).
[Crossref]

Laser Phys. Lett. (1)

Q. Shen, Y. Bai, X. Shi, S. Nan, L. Qu, H. Li, and X. Fu, “Ghost microscope imaging system from the perspective of coherent-mode representation,” Laser Phys. Lett. 15(3), 035207 (2018).
[Crossref]

Nano Lett. (1)

S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Nat. Commun. (1)

J. M. Geffrin and et al., “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3(1), 1171 (2012).
[Crossref]

Opt. Commun. (2)

X. Chen and O. Korotkova, “Probability density functions of instantaneous Stokes parameters on weak scattering,” Opt. Commun. 400, 1–8 (2017).
[Crossref]

Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283(20), 3838–3845 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Particuology (1)

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

Photon. Res. (2)

Phys. Rev. A (15)

Y. Ding and D. Zhao, “Correlation between intensity fluctuations of polychromatic electromagnetic light waves on weak scattering,” Phys. Rev. A 97(2), 023837 (2018).
[Crossref]

J. Cheng, “Theory of ghost scattering with incoherent light,” Phys. Rev. A 93(4), 043808 (2016).
[Crossref]

M. H. Zhang, Q. Wei, X. Shen, Y. F. Liu, H. L. Liu, J. Cheng, and S. S. Han, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A,  75(2), 021803 (2007).
[Crossref]

J. Cheng and S. Han, “Classical correlated imaging from the perspective of coherent-mode representation,” Phys. Rev. A 76(2), 023824 (2007).
[Crossref]

J. Cheng, “Transfer functions in lensless ghost-imaging systems,” Phys. Rev. A 78(4), 043823 (2008).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A,  77(4), 043809 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87(4), 043810 (2013).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A,  77(4), 041801 (2008).
[Crossref]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A,  82(3), 033836 (2010).
[Crossref]

Y. Wang, S. Yan, D. Kuebel, and T. D. Visser, “Dynamic control of light scattering using spatial coherence,” Phys. Rev. A 92(1), 013806 (2015).
[Crossref]

D. J. Zhang, H. G. Li, Q. L. Zhao, S. Wang, H. B. Wang, J. Xiong, and K. G. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 063824 (2011).
[Crossref]

P. B. Dixon, G. Howland, K. W. Chan, M. N. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shaprio, D. S. Simon, A. V. Sergienko, R. W. Body, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83(5), 051803 (2011).

M. F. Li, Y. R. Zhang, K. H. Luo, L. A. Wu, and H. Fan, “Time correspondence differential ghost imaging,” Phys. Rev. A 87(3), 033813 (2013).
[Crossref]

Phys. Rev. E (1)

O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E,  75(5), 056609 (2007).
[Crossref]

Phys. Rev. Lett. (6)

J. Cheng and S. Han, “Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

H. Yu, R. H. Lu, S. S Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganini, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Other (7)

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

D. Zhao and T. Wang, “Direct and Inverse Problems in the Theory of Light Scattering,” In E. Wolf ed., Progress in Optics, Vol. 57, 261–308 (Elsevier, 2012).

M. Born and E. Wolf, Principles of Optics, Ch. 13, (Cambridge University Press, 1999).

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, (John Wiley and Sons, 2000).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small particles, (Cambridge University Press, 2002).

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed. (Springer-Verlag, 2006).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Geometry of the electromagnetic ghost scattering model. An incident stochastic electromagnetic beam is split into two beams by the beam splitter (BS). An unknown test scatterer is illuminates by one of the beams and the far-zone scattered fields are detected by the test detector $D_t$ located at $\vec {r}_1$. The other beam is scattered by a reference scatterer and considered as a reference beam, with the far-zone scattered fields detected by the reference detector $D_r$ located at $\vec {r}_2$. The scattered signals measured by the test and reference detector $D_t$ and $D_r$ are further processed by the correlator to realize ghost scattering.
Fig. 2.
Fig. 2. (a)The two dimensional test scatterer $F_t(x,y)$ used in numerical simulations, length unit in mm. (b) The corresponding spatial spectrums of (a) shown as the ideally scattering distribution. (c) The calculated DSP with the parameters $A_x=1$, $A_y=0.5$, $B_{xy}=0.3$, $\sigma =20$, $\delta _{xx}=5\times 10^{-4}$, $\delta _{xy}=7.5\times 10^{-4}$, $\delta _{yy}=6\times 10^{-4}$. (d) The calculated GSP with the same parameters in (c). (e) The calculated GSP with the parameters used in (c) except $\delta _{xy}=17.5\times 10^{-4}$, $\delta _{yy}=26\times 10^{-4}$, corresponding to the case of very different coherence lengths. (f) The normalized $s_x$ axial distributions in (c,d,e), corresponding to the blue solid, red dashed, and black dotted lines respectively.
Fig. 3.
Fig. 3. Normalized GSP $I_G(s_{x},0)$ to see the effects of parameters $A_y$, $B_{xy}$ and $\sigma$ on electromagnetic ghost scattering, with $A_x=1$. The coherence lengths in the left figures (a,c,e) are $\delta _{xx}=5\times 10^{-4}$, $\delta _{xy}=7.5\times 10^{-4}$, $\delta _{yy}=6\times 10^{-4}$, and in the right figures (b,d,f) are $\delta _{xx}=5\times 10^{-4}$, $\delta _{xy}=17.5\times 10^{-4}$, $\delta _{yy}=26\times 10^{-4}$. (a,b) $s_x$ axial distributions with $A_y=0$, 0.25, 0.5, 1, corresponding to the black dotted, red dashed, blue dash-dot, and magenta solid curves, $B_{xy}=0.3$, $\sigma =20$. (c,d) $s_x$ axial distributions with $B_{xy}=0.1$, 0.3, 0.6, 0.9, corresponding to the black dotted, red dashed, blue dash-dot, and magenta solid curves, $A_{y}=0.5$, $\sigma =20$. (a,b) $s_x$ axial distributions with $\sigma =5$, 10, 20, 50, corresponding to the black dotted, red dashed, blue dash-dot, and magenta solid curves, $A_y=0.5$, $B_{xy}=0.3$.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E s ( r ) = e j k r r V d 3 r 0 F ( r 0 ) e j k s ^ r 0 S ( 3 ) ( s ^ ) E i ( r 0 ) ,
F ( r 0 ) = { 1 4 π k 2 [ n 2 ( r 0 ) 1 ] , r 0 V 0 , r 0 V
S ( 3 ) ( s ^ ) = [ 1 s x 2 s x s y s x s z s x s y 1 s y 2 s y s z s x s z s y s z 1 s z 2 ] ,
W s ( r 1 , r 2 ) = [ W α , β s ( r 1 s ^ 1 , r 2 s ^ 2 ) ] = [ E α s ( r 1 s ^ 1 ) E β s ( r 2 s ^ 2 ) ] ,
G α , β ( r 1 s ^ 1 , r 2 s ^ 2 ) = Δ I t , α s ( r 1 s ^ 1 ) Δ I r , β s ( r 2 s ^ 2 ) ,
C ( r 1 s ^ 1 , r 2 s ^ 2 ) = Δ I t s ( r 1 s ^ 1 ) Δ I r s ( r 2 s ^ 2 ) = α , β G α , β ( r 1 s ^ 1 , r 2 s ^ 2 ) .
G α , β ( r 1 s ^ 1 , r 2 s ^ 2 ) = | E t , α s ( r 1 s ^ 1 ) E r , β s ( r 2 s ^ 2 ) | 2 = | W t α , r β s ( r 1 s ^ 1 , r 2 s ^ 2 ) | 2 .
W t α , r β s ( r 1 s ^ 1 , r 2 s ^ 2 ) = e j k r 1 + j k r 2 r 1 r 2 V d 3 r a d 3 r b F t ( r a ) F r ( r b ) e j k s ^ 1 r a j k s ^ 2 r b × α β S α α ( 3 ) ( s ^ 1 ) S β β ( 3 ) ( s ^ 2 ) E α i ( r a ) E β i ( r b ) ,
G ( r 1 s ^ 1 , r 2 s ^ 2 ) = C 0 | V d 3 r a d 3 r b F t ( r a ) F r ( r b ) e j k s ^ 1 r a j k s ^ 2 r b S ( 3 ) ( s ^ 1 ) W i ( r a , r b ) S ( 3 ) T ( s ^ 2 ) | 2 ,
E s ( r ) = e j k r r V d 3 r 0 F ( r 0 ) e j k s ^ r 0 S ( 2 ) ( s ^ ) E i ( r 0 ) ,
S ( 2 ) ( s ^ ) = [ cos ( θ ) cos ( ϕ ) cos ( θ ) sin ( ϕ ) sin ( ϕ ) cos ( ϕ ) ] ,
G ( r 1 s ^ 1 , r 2 s ^ 2 ) = C 0 | V d 3 r a d 3 r b F t ( r a ) F r ( r b ) e j k s ^ 1 r a j k s ^ 2 r b S ( 2 ) ( s ^ 1 ) W i ( r a , r b ) S ( 2 ) T ( s ^ 2 ) | 2 .
G ( r 1 s ^ 1 , r 2 s ^ 2 ) = | S ( 2 ) ( s ^ 1 ) [ F ~ x x ( k s ^ 1 , k s ^ 2 ) F ~ x y ( k s ^ 1 , k s ^ 2 ) F ~ y x ( k s ^ 1 , k s ^ 2 ) F ~ y y ( k s ^ 1 , k s ^ 2 ) ] S ( 2 ) T ( s ^ 2 ) | 2 ,
F ~ α β ( k s ^ 1 , k s ^ 2 ) = V d 2 ρ a d 2 ρ b e j k s ^ 1 ρ a j k s ^ 2 ρ b F t ( ρ a ) F r ( ρ b ) W α β i ( ρ a , ρ b ) .
C = C 0 [ ( cos θ 1 cos ϕ 1 cos θ 2 cos ϕ 2 ) 2 + ( cos θ 1 cos ϕ 1 sin ϕ 2 ) 2 + ( sin ϕ 1 cos θ 2 cos ϕ 2 ) 2 + ( sin ϕ 1 sin ϕ 2 ) 2 ] | F ~ x x | 2 .
W α , β 0 ( ρ 1 , ρ 2 ) = S α 0 ( ρ 1 ) S β 0 ( ρ 2 ) μ α β 0 ( ρ 1 ρ 2 ) ,
S α 0 ( ρ ) = A α 2 exp ( | ρ | 2 2 σ α 2 ) ,
μ α β 0 ( ρ 1 ρ 2 ) = B α β exp ( | ρ 1 ρ 2 | 2 2 δ α β 2 ) ,
W i ( ρ a , ρ b ) α β = A α A β B α β Δ α β 2 ( z ) exp [ | ρ a + ρ b | 2 8 σ 2 Δ α β 2 ( z ) ] exp [ | ρ a ρ b | 2 2 Ω α β 2 Δ α β 2 ( z ) ] exp [ i k ( ρ b 2 ρ a 2 ) 2 R α β ( z ) ] ,
1 Ω α β 2 = 1 4 σ 2 + 1 δ α β 2 , Δ α β 2 ( z ) = 1 + ( z k σ Ω α β ) 2 , R α β ( z ) = [ 1 + ( k σ Ω α β z ) 2 ] z .

Metrics