Abstract

We propose a ray-mapping based algorithm for the tissue ablation calculation to produce an optimum freeform anterior corneal surface that is responsible for the correction of ocular aberrations. With knowledge of the measured ocular wavefront and the anterior corneal surface, the numerical ray tracing method is used to calculate the intra-corneal wavefront and to generate the optimal corneal ablation profile determined by the accurate ray-mapping between the intra-corneal wavefront and the target ocular wavefront. This method is compared with the conventional wavefront-guided based algorithm for the ametropic eye models in theory, providing superior performance both in the aberration-free correction and the aberration selective correction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

Linda E. Marchese, Rejean Munger, and David Priest
J. Opt. Soc. Am. A 22(8) 1471-1481 (2005)

Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror

Yun Dai, Lina Zhao, Fei Xiao, Haoxin Zhao, Hua Bao, Hong Zhou, Yifeng Zhou, and Yudong Zhang
Appl. Opt. 54(5) 979-985 (2015)

Interocular high-order corneal wavefront aberration symmetry

Marco Lombardo, Giuseppe Lombardo, and Sebastiano Serrao
J. Opt. Soc. Am. A 23(4) 777-787 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
    [Crossref]
  2. M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
    [Crossref]
  3. F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
    [Crossref]
  4. M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
    [Crossref]
  5. J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
    [Crossref]
  6. M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
    [Crossref]
  7. V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
    [Crossref]
  8. R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II, 2nd ed. (Slack Incorporated, 2003).
  9. D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
    [Crossref]
  10. D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
    [Crossref]
  11. K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).
  12. M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
    [Crossref]
  13. M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
    [Crossref]
  14. R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
    [Crossref]
  15. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [Crossref]
  16. V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545–561 (2011).
    [Crossref]
  17. ISO, “Ophthalmic optics and instruments - Reporting aberrations of the human eye,” in ISO 24157:2008.
  18. D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
    [Crossref]
  19. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [Crossref]
  20. P. Artal, Handbook of Visual Optics, Volume Two: Instrumentation and Vision Correction, 1st ed. (CRC Press, 2017).
  21. S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A 20(1), 1–10 (2003).
    [Crossref]
  22. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
    [Crossref]
  23. S. A. Klein, “Optimal corneal ablation for eyes with arbitrary Hartmann–Shack aberrations,” J. Opt. Soc. Am. A 15(9), 2580–2588 (1998).
    [Crossref]
  24. M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
    [Crossref]
  25. T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
    [Crossref]

2018 (2)

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

2017 (1)

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

2016 (2)

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

2014 (1)

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

2013 (1)

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

2011 (2)

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545–561 (2011).
[Crossref]

2010 (1)

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

2009 (1)

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

2008 (1)

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).

2003 (3)

M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
[Crossref]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A 20(1), 1–10 (2003).
[Crossref]

2002 (2)

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[Crossref]

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

2001 (2)

M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
[Crossref]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
[Crossref]

2000 (1)

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[Crossref]

1998 (1)

1994 (1)

Allan, B. D.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Anand, V.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Ang, R. E.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Applegate, R. A.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II, 2nd ed. (Slack Incorporated, 2003).

Artal, P.

P. Artal, Handbook of Visual Optics, Volume Two: Instrumentation and Vision Correction, 1st ed. (CRC Press, 2017).

Atezhev, V. V.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Atienza, R.

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

Bará, S.

Barchunov, B. V.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Bhalaby, B. A.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Bille, J. F.

Bradley, A.

Brown, M.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Brunstetter, T.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Bueeler, M.

M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
[Crossref]

Bunnapradist, P.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Chan, W. K.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Cheng, X.

Collins, M. J.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
[Crossref]

Cox, I.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Culbertson, W.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

Dai, M. L.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Daniel, M.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Davis, B.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
[Crossref]

De Castro, T.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Durán, J. A.

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

El-Kateb, M.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Ezzeldin, H.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Fernandez-Vega, L.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Fleck, A.

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545–561 (2011).
[Crossref]

George, M. R.

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

Goelz, S.

Grimm, B.

Gutiérrez, E.

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

Helaly, H.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Ho, A.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

Hofmeister, E.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Hong, X.

Hood, C.

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

Huang, J. H.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Iskander, D. R.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
[Crossref]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[Crossref]

Kaupp, S.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Kelly, N.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Kezirian, G. M.

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).

Khalifa, M. A.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Klein, S. A.

Konomi, K.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Krueger, R. R.

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II, 2nd ed. (Slack Incorporated, 2003).

Lakshminarayanan, V.

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545–561 (2011).
[Crossref]

Lapshin, K. E.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Lecomte, F.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Lee, H. M.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Leucci, M. T.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Liang, J.

Lin, Z. S.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

MacRae, S. M.

R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II, 2nd ed. (Slack Incorporated, 2003).

Manns, F.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

Marsack, J. D.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

Mirzaoff, M.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Mosquera, S. A.

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

Movshev, V. G.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Mrochen, M.

M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[Crossref]

Navarro, R.

Negishi, K.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Ohnuma, K.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Parel, J. M.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

Paya, C.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Piñero, D. P.

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Ramos, R.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

Santhiago, M. R.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Sarver, E. J.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

Satake, Y.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Savini, G.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Schallhorn, S.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Seiler, T.

M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[Crossref]

Shah, R. A.

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

Shaheen, M. S.

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

Shcherbakov, I. A.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Shimazaki, J.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Smadja, D.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Sray, W.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Stonecipher, K. G.

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).

Tanzer, D. J.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Tellouck, J.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Tellouck, L.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Thibos, L. N.

Tomida, D.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Touboul, D.

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

Tsubota, K.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Vartapetov, S. K.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Wang, L.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Wang, Q. M.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Wee, T. L.

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

Xu, C. C.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Yamaguchi, T.

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

Yu, Y.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Zav’yalov, A. S.

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Zeber, R.

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

Zhang, J.

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Acta Ophthalmol. (1)

M. L. Dai, Q. M. Wang, Z. S. Lin, Y. Yu, J. H. Huang, G. Savini, J. Zhang, L. Wang, and C. C. Xu, “Posterior corneal surface differences between non-laser in situ keratomileusis (LASIK) and 10-year post-LASIK myopic eyes,” Acta Ophthalmol. 96(2), e127–e133 (2018).
[Crossref]

Cornea (1)

M. S. Shaheen, B. A. Bhalaby, D. P. Piñero, H. Ezzeldin, M. El-Kateb, H. Helaly, and M. A. Khalifa, “Wave Front-Guided Photorefractive Keratectomy Using a High-Resolution Aberrometer After Corneal Collagen Cross-Linking in Keratoconus,” Cornea 35(7), 946–953 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48(1), 87–95 (2001).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

T. Yamaguchi, K. Ohnuma, D. Tomida, K. Konomi, Y. Satake, K. Negishi, K. Tsubota, and J. Shimazaki, “The Contribution of the Posterior Surface to the Corneal Aberrations in Eyes after Keratoplasty,” Invest. Ophthalmol. Visual Sci. 52(9), 6222–6229 (2011).
[Crossref]

J. Cataract Refractive Surg. (8)

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refractive Surg. 29(8), 1487–1495 (2003).
[Crossref]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001).
[Crossref]

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28(5), 766–774 (2002).
[Crossref]

M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003).
[Crossref]

R. E. Ang, W. K. Chan, T. L. Wee, H. M. Lee, P. Bunnapradist, and I. Cox, “Efficacy of an aspheric treatment algorithm in decreasing induced spherical aberration after laser in situ keratomileusis,” J. Cataract Refractive Surg. 35(8), 1348–1357 (2009).
[Crossref]

J. A. Durán, E. Gutiérrez, R. Atienza, and D. P. Piñero, “Vector analysis of astigmatic changes and optical quality outcomes after wavefront-guided laser in situ keratomileusis using a high-resolution aberrometer,” J. Cataract Refractive Surg. 43(12), 1515–1522 (2017).
[Crossref]

M. Daniel, M. T. Leucci, V. Anand, L. Fernandez-Vega, S. A. Mosquera, and B. D. Allan, “Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus,” J. Cataract Refractive Surg. 44(5), 571–580 (2018).
[Crossref]

D. J. Tanzer, T. Brunstetter, R. Zeber, E. Hofmeister, S. Kaupp, N. Kelly, M. Mirzaoff, W. Sray, M. Brown, and S. Schallhorn, “Laser in situ keratomileusis in United States Naval aviators,” J. Cataract Refractive Surg. 39(7), 1047–1058 (2013).
[Crossref]

J. Mod. Opt. (1)

V. Lakshminarayanan and A. Fleck, “Zernike polynomials: a guide,” J. Mod. Opt. 58(7), 545–561 (2011).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (4)

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).
[Crossref]

D. Smadja, T. De Castro, L. Tellouck, J. Tellouck, F. Lecomte, D. Touboul, C. Paya, and M. R. Santhiago, “Wavefront Analysis After Wavefront-Guided Myopic LASIK Using a New Generation Aberrometer,” J. Refract. Surg. 30(9), 610–615 (2014).
[Crossref]

K. G. Stonecipher and G. M. Kezirian, “Wavefront-optimized versus wavefront-guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three-month results of a prospective FDA trial,” J. Refract. Surg. 24(4), S424–S430 (2008).

M. R. George, R. A. Shah, C. Hood, and R. R. Krueger, “Transitioning to optimized correction with the WaveLight ALLEGRETTO WAVE: case distribution, visual outcomes, and wavefront aberrations,” J. Refract. Surg. 26(10), S806–S813 (2010).
[Crossref]

Laser Phys. (1)

V. V. Atezhev, B. V. Barchunov, S. K. Vartapetov, A. S. Zav’yalov, K. E. Lapshin, V. G. Movshev, and I. A. Shcherbakov, “Laser technologies in ophthalmic surgery,” Laser Phys. 26(8), 084010 (2016).
[Crossref]

Other (3)

R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II, 2nd ed. (Slack Incorporated, 2003).

ISO, “Ophthalmic optics and instruments - Reporting aberrations of the human eye,” in ISO 24157:2008.

P. Artal, Handbook of Visual Optics, Volume Two: Instrumentation and Vision Correction, 1st ed. (CRC Press, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Wavefront propagation simulated by ray tracing. (a) The measured ocular wavefront Wm propagates in air along the local normal directions to generate the propagated wavefront Wp; (b) reverse engineering of the intra-corneal wavefront Wic by the reverse ray tracing of the measured ACS from the propagated wavefront Wp.
Fig. 2.
Fig. 2. Iterative ray tracing algorithm of the measured ACS
Fig. 3.
Fig. 3. RM based calculation of the desired postoperative ACS. (a) Aberration-free correction; (b) aberration selective correction
Fig. 4.
Fig. 4. Numerical calculation of the intra-corneal wavefront Wic by reverse ray tracing. (a) The measured ocular wavefront Wm propagates in air along the local normal directions to generate (b) the propagated wavefront Wp; (c) measured ACS; (d) reverse ray tracing of the measured ACS with rays starting from the wavefront Wp; (e) calculated intra-corneal wavefront Wic.
Fig. 5.
Fig. 5. RM based calculation of CAP for aberration-free correction in case 3. (a) Emergent planar wavefront Wf; (b) intra-corneal wavefront Wic; (c) calculation of the postoperative ACS ruled by the explicit ray mapping from the wavefront Wic to the wavefront Wf; (d) calculated postoperative ACS; (e) calculated RM based CAPRM.
Fig. 6.
Fig. 6. Retinal image of postoperative eye models in simulation of aberration-free correction with the CAP calculated by RM base algorithm or GW base algorithm.
Fig. 7.
Fig. 7. Calculated MTFs of ametropic eye models. Defocus is not included in the wavefront error for MTF calculation. (a) Preoperative MTFs; (b) MTFs of postoperative eye models in simulation of aberration-free correction with the CAP calculated by GW base algorithm.
Fig. 8.
Fig. 8. Deviation of corneal ablation in WG based method for aberration-free correction as compared with the baseline of CAPRM from (a) case 1 to (i) case 9.
Fig. 9.
Fig. 9. RM based calculation of CAP for aberration selective correction in case 3. (a) Propagated target ocular wavefront Wpt; (b) intra-corneal wavefront Wic; (c) calculation of the postoperative ACS ruled by the ray mapping from the wavefront Wic to the wavefront Wpt; (d) calculated postoperative ACS; (e) calculated RM based CAPRM.
Fig. 10.
Fig. 10. Zernike coefficients of HOAs of postoperative eye models in simulation of aberration selective correction with the CAP calculated by GW base algorithm.
Fig. 11.
Fig. 11. Retinal image of postoperative eye models in simulation of aberration selective correction with the CAP calculated by RM base algorithm or GW base algorithm. Only HOAs have been considered.
Fig. 12.
Fig. 12. Deviation of corneal ablation in WG based method for aberration selective correction as compared with the baseline of CAPRM from (a) case 1 to (f) case 6.

Tables (4)

Tables Icon

Table 1. Second order Zernike coefficients in the wavefront Wm and the corresponding wavefront refraction

Tables Icon

Table 2. Ablation parameters and residual wavefront error in aberration-free correction

Tables Icon

Table 3. Ablation parameters for aberration selective correction

Tables Icon

Table 4. Residual wavefront refraction and wavefront aberration in aberration selective correction

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N m = 1 1 + ( W m x ) 2 + ( W m y ) 2 ( W m x , W m y , 1 )
P = M + d N m
S ( x , y ) = n , m a n m Z n m ( x , y )
N c = 1 1 + ( S ( x , y ) x ) 2 + ( S ( x , y ) y ) 2 ( S ( x , y ) x , S ( x , y ) y , 1 )
cos θ 1 = N c N m
n a sin θ 1 = n c sin θ 2
N i = n a N m N c ( n a cos θ 1 n c cos θ 2 ) n c
WD = W e ( x , y ) W pt ( x , y )
Δ S = WD n s n a
C 1 = C 1 + Δ S × N i
CA P WG = max ( W m ( x , y ) ) W m ( x , y ) n s n a
PF ( x , y ) = A ( x , y ) exp [ i 2 π λ W e ( x , y ) ]
PSF ( x , y ) = | FT ( PF ) | 2
I ( x , y ) = O ( u , v ) PSF ( u x / M , v y / M ) d u d v
Δ CAP = CA P WG CA P RM
CAP WG = max ( W m ( x , y ) ) W m ( x , y ) n s n a

Metrics