Abstract

Polarization dependent image artifacts are common in optical coherence tomography imaging. Polarization insensitive detection scheme for swept source based optical coherence tomography systems is well established but is yet to be demonstrated for all fiber spectrometer-based Fourier domain optical coherence tomography systems. In this work, we present an all fiber polarization insensitive detection scheme for spectrometer based optical coherence tomography systems. Images from chicken breast muscle tissue were acquired to demonstrate the effectiveness of this scheme for the conventional Fourier domain optical coherence tomography system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Artifact-free robust single-shot background subtraction for optical coherence tomography

Hari Nandakumar, Swaroop Parameshwaran, Rohith Gamini, and Shailesh Srivastava
OSA Continuum 2(5) 1556-1564 (2019)

Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method

Masahiro Yamanari, Shuichi Makita, Violeta Dimitrova Madjarova, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 14(14) 6502-6515 (2006)

Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line

Min Gyu Hyeon, Hyung-Jin Kim, Beop-Min Kim, and Tae Joong Eom
Opt. Express 23(18) 23079-23091 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  4. M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.
  5. H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010).
    [Crossref]
  6. A. M. D. Lee, H. Pahlevaninezhad, V. X. D. Yang, S. Lam, C. MacAulay, and P. Lane, “Fiber-optic polarization diversity detection for rotary probe optical coherence tomography,” Opt. Lett. 39(12), 3638–3641 (2014).
    [Crossref]
  7. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
    [Crossref]
  8. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
    [Crossref]
  9. C. Fan and G. Yao, “Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation,” Opt. Express 18(7), 7281–7287 (2010).
    [Crossref]
  10. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
    [Crossref]
  11. Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
    [Crossref]
  12. C. Song, M. Ahn, and D. Gweon, “Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer,” Opt. Express 18(23), 23805–23817 (2010).
    [Crossref]
  13. S.-W. Lee, H. W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
    [Crossref]
  14. M. G. Hyeon, H.-J. Kim, B.-M. Kim, and T. J. Eom, “Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line,” Opt. Express 23(18), 23079–23091 (2015).
    [Crossref]

2017 (1)

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

2015 (1)

2014 (1)

2011 (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

2010 (4)

2007 (1)

2006 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Ahn, M.

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

Boer, J. F. D.

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Bouma, B. E.

Cense, B.

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chinn, S. R.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Eom, T. J.

Fan, C.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Götzinger, E.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Gweon, D.

He, Y.

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hitzenberger, C. K.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hyeon, M. G.

Jeong, H. W.

S.-W. Lee, H. W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kim, B.-M.

M. G. Hyeon, H.-J. Kim, B.-M. Kim, and T. J. Eom, “Spectral domain optical coherence tomography with balanced detection using single line-scan camera and optical delay line,” Opt. Express 23(18), 23079–23091 (2015).
[Crossref]

S.-W. Lee, H. W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref]

Kim, H.-J.

Lam, S.

Lane, P.

Lee, A. M. D.

Lee, S.-W.

S.-W. Lee, H. W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref]

Li, H.

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

Li, Z.

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

MacAulay, C.

Pahlevaninezhad, H.

Park, H.

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Pircher, M.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Song, C.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Swanson, E. A.

Tearney, G. J.

Vakoc, B. J.

Wang, H.

Yang, V. X. D.

Yao, G.

Yun, S. H.

Zhang, Y.

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

J. Biomed. Opt. (1)

S.-W. Lee, H. W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref]

Opt. Commun. (2)

Y. He, Z. Li, Y. Zhang, and H. Li, “Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection,” Opt. Commun. 403, 162–165 (2017).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Prog. Retinal Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retinal Eye Res. 30(6), 431–451 (2011).
[Crossref]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (1)

M. C. Pierce, J. Strasswimmer, H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” in (SPIE, 2004), 5.

Supplementary Material (2)

NameDescription
» Visualization 1       Image of chicken breast tissue acquired with standard OCT system
» Visualization 2       Image of the tissue acquired with polarization insensitive OCT system

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of the FD-OCT system employing polarization insensitive detection scheme is shown. (SMF: Single mode fiber, Cr: circulator, BS: beam splitter, PC: polarization controller, Co: collimator, NDF: neutral density filter, M: mirror, MPU: motor power unit, EC: electrical connection, MW: motor wire, PBS: polarizing beam splitter, OS: optical switch, G: grating, L: lens, LSC: line scan camera).
Fig. 2.
Fig. 2. (left) Image of chicken breast tissue acquired with OCT system without PIDU (Visualization 1) and (right) image of the same tissue approximately at the same location acquired with OCT system with PIDU (Visualization 2).
Fig. 3.
Fig. 3. Measure of change in signal intensity of the capsule wall from OCT system without PIDU and OCT system with PIDU

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I H 2 + I V 2

Metrics