Abstract

In this work, a highly sensitive surface plasmon resonance (SPR) sensor based on a single mode fiber (SMF) incorporating a large microfluidic channel (MFC) for refractive index (RI) sensing is designed and optimized using a full-vectorial finite element method (FEM). The fluidic channel size can be varied according to the requirement due to the availability of the large cladding diameter of SMF, which makes it simple and easy to fabricate. The proposed novel sensor is favourable to both analytes and metallic strips. The D-shaped hollow section above the core is filled with the measurand analytes and a gold (Au) strip is deposited on the base of the MFC, as it is known as the most attractive metal for SPR. Our numerical simulations illustrate that the confinement loss of the designed sensor is highly influenced by the distance of the MFC from the core along with the width and thickness of the Au strip. The designed sensor shows an average sensitivity of 1350 nm/RIU and maximum sensitivity of 8250 nm/RIU in the sensing range of 1.33-1.35 and 1.41-1.43, respectively. However, for a small variation of na at a step of 0.005, within ranges like 1.415, 1.420, and 1.425, we have achieved a maximum sensitivity of 7000 nm/RIU, 9000 nm/RIU and 11000 nm/RIU, respectively. This novel SPR sensor with MFC can open up a new opportunity in the application of chemical and biological sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
    [Crossref]
  2. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref]
  3. A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
    [Crossref]
  4. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
    [Crossref]
  5. M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
    [Crossref]
  6. A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
    [Crossref]
  7. F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
    [Crossref]
  8. E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  9. S. Kumari and S. Gupta, “Cladding stress induced performance variation of silicon MMI coupler,” Photonics Nanostructures - Fundam. Appl. 33, 55–65 (2019).
    [Crossref]
  10. S. Ghosh and B. M. A. Rahman, “A compact Mach–Zehnder interferometer using composite plasmonic waveguide for ethanol vapor sensing,” J. Lightwave Technol. 35(14), 3003–3011 (2017).
    [Crossref]
  11. C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
    [Crossref]
  12. D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
    [Crossref]
  13. Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
    [Crossref]
  14. J. K. Nayak and R. Jha, “Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing,” Appl. Opt. 56(12), 3510–3517 (2017).
    [Crossref]
  15. M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
    [Crossref]
  16. A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
    [Crossref]
  17. A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators, B 230, 536–543 (2016).
    [Crossref]
  18. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  19. J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
    [Crossref]
  20. A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
    [Crossref]
  21. H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
    [Crossref]
  22. M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
    [Crossref]
  23. Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
    [Crossref]
  24. J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express 16(18), 13552–13559 (2008).
    [Crossref]
  25. Q. Xie, Y. Chen, X. Li, Z. Yin, L. Wang, Y. Geng, and X. Hong, “Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths,” Appl. Opt. 56(5), 1550–1555 (2017).
    [Crossref]
  26. N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
    [Crossref]
  27. M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
    [Crossref]
  28. G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
    [Crossref]
  29. L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
    [Crossref]
  30. S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
    [Crossref]
  31. V. Brucker, “To the use of Sellmeier formula,” Springer, pp. 0–7, 2011.
  32. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  33. P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref]
  34. R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
    [Crossref]
  35. B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32(1), 20–28 (1984).
    [Crossref]
  36. “COMSOL Multiphysics® Modeling Software.”
  37. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
    [Crossref]
  38. Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049–15063 (2014).
    [Crossref]
  39. A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.
  40. E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
    [Crossref]
  41. W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
    [Crossref]

2019 (2)

S. Kumari and S. Gupta, “Cladding stress induced performance variation of silicon MMI coupler,” Photonics Nanostructures - Fundam. Appl. 33, 55–65 (2019).
[Crossref]

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

2018 (6)

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
[Crossref]

B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
[Crossref]

A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

2017 (9)

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
[Crossref]

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

J. K. Nayak and R. Jha, “Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing,” Appl. Opt. 56(12), 3510–3517 (2017).
[Crossref]

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

S. Ghosh and B. M. A. Rahman, “A compact Mach–Zehnder interferometer using composite plasmonic waveguide for ethanol vapor sensing,” J. Lightwave Technol. 35(14), 3003–3011 (2017).
[Crossref]

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
[Crossref]

Q. Xie, Y. Chen, X. Li, Z. Yin, L. Wang, Y. Geng, and X. Hong, “Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths,” Appl. Opt. 56(5), 1550–1555 (2017).
[Crossref]

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

2016 (5)

N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators, B 230, 536–543 (2016).
[Crossref]

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

2015 (3)

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

2014 (3)

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049–15063 (2014).
[Crossref]

2012 (1)

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

2008 (2)

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express 16(18), 13552–13559 (2008).
[Crossref]

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2006 (1)

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

1998 (1)

1994 (1)

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

1986 (1)

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32(1), 20–28 (1984).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Abbott, D.

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Ahmad, H.

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

Ahmed, K.

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

Ahmed, R.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Akter, S.

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Alameh, K.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Alda, J.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
[Crossref]

Ali, S.

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Al-Qazwini, Y.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

Al-Qazwini, Z.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

An, G.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Badding, J. V.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Baptista, J. M.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
[Crossref]

Baril, N. F.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Barry, T. S.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

Benson, T.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Birch, R. D.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

Borhan, A.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Brucker, V.

V. Brucker, “To the use of Sellmeier formula,” Springer, pp. 0–7, 2011.

Butt, H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Chaudhary, D. K.

A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
[Crossref]

Chen, Y.

Cheng, T.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Chesini, G.

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

Chu, P. K.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Cordaro, M. H.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

Cordeiro, C. M. B.

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

Correa, A.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Crespi, V. H.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Cuadrado, A.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
[Crossref]

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32(1), 20–28 (1984).
[Crossref]

Day, T. D.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Ding, C.

N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Djurišic, A. B.

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Dwivedi, Y. S.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Elazar, J. M.

Elshorbagy, M. H.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
[Crossref]

Fan, P.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049–15063 (2014).
[Crossref]

Finlayson, C. F.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Franco, M. A. R.

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

François, A.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Gangwar, R. K.

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Geng, Y.

Ghosh, S.

S. Ghosh and B. M. A. Rahman, “A compact Mach–Zehnder interferometer using composite plasmonic waveguide for ethanol vapor sensing,” J. Lightwave Technol. 35(14), 3003–3011 (2017).
[Crossref]

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Gopalan, V.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Gowri, A.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators, B 230, 536–543 (2016).
[Crossref]

Guerreiro, A.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Gupta, B. D.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Gupta, S.

S. Kumari and S. Gupta, “Cladding stress induced performance variation of silicon MMI coupler,” Photonics Nanostructures - Fundam. Appl. 33, 55–65 (2019).
[Crossref]

Hao, X.

Harun, S. W.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

Hasan, M.

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Hasan, M. R.

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

He, R.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Healy, N.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Hong, X.

Jackson, B. R.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Jha, R.

J. K. Nayak and R. Jha, “Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing,” Appl. Opt. 56(12), 3510–3517 (2017).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

Jia, P.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Kang, S.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Kaur, B.

A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
[Crossref]

Keshavarzi, B.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Kim, M.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Klantsataya, E.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Krchnavek, R. R.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Krishnamurthi, M.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Kumari, S.

S. Kumari and S. Gupta, “Cladding stress induced performance variation of silicon MMI coupler,” Photonics Nanostructures - Fundam. Appl. 33, 55–65 (2019).
[Crossref]

Kvavle, J. M.

Li, G.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Li, J.

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Li, L.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

Li, S.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Li, X.

Lian, Z.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Liu, C.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Liu, K.-C.

B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
[Crossref]

Liu, Q.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Lou, S.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Luan, N.

N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Mahdi, M. A.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Majewski, M. L.

Margine, E. R.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Michel, D.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Mohammad, A.

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

Monro, T.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Mu, H.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Nayak, J. K.

Nguyen, H.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Ning, T.

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Noor, A. S. M.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

Osório, J. H.

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

Pandey, A. K.

A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
[Crossref]

Park, J.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Pathak, A. K.

A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
[Crossref]

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Patnaik, A.

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

Payne, D. N.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

Peacock, A. C.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Pei, L.

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Prabowo, B.

B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
[Crossref]

Purwidyantri, A.

B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
[Crossref]

Qazi, H.

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Rahman, B. M. A.

S. Ghosh and B. M. A. Rahman, “A compact Mach–Zehnder interferometer using composite plasmonic waveguide for ethanol vapor sensing,” J. Lightwave Technol. 35(14), 3003–3011 (2017).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32(1), 20–28 (1984).
[Crossref]

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Rakic, A. D.

Rana, S.

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Rifat, A.

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Rifat, A. A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Rode, D. L.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

Sabouri, A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Sai, V. V. R.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators, B 230, 536–543 (2016).
[Crossref]

Santos, D. F.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
[Crossref]

Sazio, P. J. A.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Scheidemantel, T. J.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Schultz, S. M.

Selfridge, R. H.

Senthilnathan, K.

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

Serrão, V. A.

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

Shao, Y.

Sharma, A. K.

A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
[Crossref]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Singh, V. K.

A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
[Crossref]

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Sparks, J. R.

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

Sun, T.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Sun, Z.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tan, Z.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049–15063 (2014).
[Crossref]

Wang, F.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Wang, J.

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Wang, L.

Wang, X.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Weng, S.

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Won, D.-J.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Wylangowski, G.

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

Xiao, F.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Xie, Q.

Xu, A.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Yaacob, M. H.

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

Yan, X.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Yang, L.

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

Yao, J. A.

N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Yetisen, A. K.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Yin, Z.

Yuan, Z.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Yun, S. H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

Zhang, F.

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Zhang, W.

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Zhang, X.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Zhou, X.

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Zulkifli, M.

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Biosensors (1)

B. Prabowo, A. Purwidyantri, and K.-C. Liu, “Surface plasmon resonance optical sensor: A review on light source technology,” Biosensors 8(3), 80 (2018).
[Crossref]

Electron. Lett. (1)

L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22(19), 1020 (1986).
[Crossref]

IEEE Photonics J. (1)

N. Luan, C. Ding, and J. A. Yao, “Refractive Index and temperature sensor based on surface plasmon resonance in an exposed-Core microstructured optical fiber,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. R. Hasan, S. Akter, K. Ahmed, and D. Abbott, “Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber,” IEEE Photonics Technol. Lett. 30(4), 315–318 (2018).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photonics Technol. Lett. 27(23), 2437–2440 (2015).
[Crossref]

C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, and P. K. Chu, “Birefringent PCF based SPR sensor for a broad range of low refractive index detection,” IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32(1), 20–28 (1984).
[Crossref]

J. Am. Chem. Soc. (1)

R. He, T. D. Day, J. R. Sparks, B. Keshavarzi, M. Krishnamurthi, A. Borhan, V. Gopalan, A. C. Peacock, N. Healy, P. J. A. Sazio, and J. V. Badding, “Confined high-pressure chemical deposition of hydrogenated amorphous silicon,” J. Am. Chem. Soc. 134(1), 19–22 (2012).
[Crossref]

J. Lightwave Technol. (3)

S. Ghosh and B. M. A. Rahman, “A compact Mach–Zehnder interferometer using composite plasmonic waveguide for ethanol vapor sensing,” J. Lightwave Technol. 35(14), 3003–3011 (2017).
[Crossref]

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol. 12(9), 1524–1531 (1994).
[Crossref]

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

A. K. Sharma, A. K. Pandey, and B. Kaur, “A review of advancements (2007–2017) in plasmonics-based optical fiber sensors,” Opt. Fiber Technol. 43, 20–34 (2018).
[Crossref]

Opt. Quantum Electron. (1)

W. Zhang, Z. Lian, T. Benson, X. Wang, and S. Lou, “A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt,” Opt. Quantum Electron. 50(1), 29 (2018).
[Crossref]

Optik (1)

D. F. Santos, A. Guerreiro, and J. M. Baptista, “Surface plasmon resonance sensor based on D-type fiber with a gold wire,” Optik 139, 244–249 (2017).
[Crossref]

Photonics (1)

M. Hasan, S. Akter, A. Rifat, S. Rana, and S. Ali, “A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance,” Photonics 4(4), 18 (2017).
[Crossref]

Photonics Nanostructures - Fundam. Appl. (1)

S. Kumari and S. Gupta, “Cladding stress induced performance variation of silicon MMI coupler,” Photonics Nanostructures - Fundam. Appl. 33, 55–65 (2019).
[Crossref]

Photonics Res. (2)

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Res. 5(6), 654–661 (2017).
[Crossref]

S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Res. 5(2), 103–107 (2017).
[Crossref]

Plasmonics (3)

G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, and Z. Yuan, “Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform,” Plasmonics 14(1), 155–163 (2019).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Sci. Rep. (1)

J. H. Osório, G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Simplifying the design of microstructured optical fibre pressure sensors,” Sci. Rep. 7(1), 2990 (2017).
[Crossref]

Science (1)

P. J. A. Sazio, A. Correa, C. F. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref]

Sens. Actuators, A (2)

Y. Al-Qazwini, A. S. M. Noor, Z. Al-Qazwini, M. H. Yaacob, S. W. Harun, and M. A. Mahdi, “Refractive index sensor based on SPR in symmetrically etched plastic optical fibers,” Sens. Actuators, A 246, 163–169 (2016).
[Crossref]

A. K. Pathak, D. K. Chaudhary, and V. K. Singh, “Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber,” Sens. Actuators, A 280, 399–405 (2018).
[Crossref]

Sens. Actuators, B (2)

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators, B 243, 311–325 (2017).
[Crossref]

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators, B 230, 536–543 (2016).
[Crossref]

Sensors (3)

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

H. Qazi, A. Mohammad, H. Ahmad, and M. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors 16(9), 1505 (2016).
[Crossref]

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends,” Sensors 17(12), 12–23 (2016).
[Crossref]

Zeitschrift für Naturforsch. A (1)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Other (3)

“COMSOL Multiphysics® Modeling Software.”

V. Brucker, “To the use of Sellmeier formula,” Springer, pp. 0–7, 2011.

A. K. Pathak, S. Ghosh, R. K. Gangwar, B. M. A. Rahman, and V. K. Singh, “Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid”, Plasmonics, doi:10.1007/s11468-019-00969-y (in Press), 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Cross-sectional view of the proposed sensor design
Fig. 2.
Fig. 2. Schematic diagram of experimental setup for designed sensor system
Fig. 3.
Fig. 3. Dispersion curves of the core and SPP modes for na=1.33. Inset mode profile shows the electric field distribution for proposed sensor at λ=1.66 µm and the phase matching profile at λR = 1.735 µm.
Fig. 4.
Fig. 4. (a). Variation in loss spectra at various separations (D) between MFC and core, (b). influence of variation of D over modal loss.
Fig. 5.
Fig. 5. (a) Variation in loss spectra at different tAu with respect to wavelength, (b) influence of variation of Au thickness (tAu) over modal loss.
Fig. 6.
Fig. 6. (a) Variation in loss spectra at different width of Au strip and (b). variation of the peak wavelength and the loss with the Au width.
Fig. 7.
Fig. 7. Variation of (a) loss spectra and (b). resonance wavelength, at different na.
Fig. 8.
Fig. 8. Sensitivity variation with the measurand refractive index (na).

Tables (2)

Tables Icon

Table 1. Device sensitivity and FOM corresponding to each na

Tables Icon

Table 2. The detailed comparison of various sensors and their sensitivity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ 2 ) = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3
α ( d B m ) = 8.686. k 0 . I m ( n e f f )
S = Δ λ p e a k Δ n a ( n m R I U )

Metrics