Abstract

Femtosecond micromachining offers a contact-free and mask-less technique for material patterning. Femtosecond pulse irradiation of single layer graphene by low energy pulses around 12 nJ over a 15 second illumination period is studied. The ablated graphene holes are surrounded by a radially symmetric region characterized by generated defects, whose extension can be modified based on the laser fluence. The femtosecond induced structural modifications can be attractive for graphene or carbon-based device fabrication as well as sensor and transistor applications, where regions of varying carrier concentrations and different electrical, optical, or physical properties are desired.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis
J. Opt. Soc. Am. B 32(1) 150-156 (2015)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
    [Crossref]
  2. T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  3. M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
    [Crossref]
  4. J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
    [Crossref]
  5. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  6. A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
    [Crossref]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  8. R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
    [Crossref]
  9. J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
    [Crossref]
  10. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  11. E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
    [Crossref]
  12. A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
    [Crossref]
  13. R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
    [Crossref]
  14. T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
    [Crossref]
  15. B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
    [Crossref]
  16. Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
    [Crossref]
  17. G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
    [Crossref]
  18. J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
    [Crossref]
  19. M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
    [Crossref]
  20. C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
    [Crossref]
  21. I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
    [Crossref]
  22. S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
    [Crossref]
  23. J. V. Erps, T. Ciuk, I. Pasternak, A. Krajewska, W. Strupinski, S. V. Put, G. V. Steenberge, K. Baert, H. Terryn, H. Thienpont, and N. Vermeulen, “Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides,” Opt. Express 23(20), 26639–26650 (2015).
    [Crossref]
  24. D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
    [Crossref]
  25. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
    [Crossref]
  26. A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
    [Crossref]
  27. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref]
  28. J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
    [Crossref]
  29. M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
    [Crossref]
  30. R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
    [Crossref]
  31. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
    [Crossref]
  32. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
    [Crossref]

2018 (1)

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

2017 (3)

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

2016 (1)

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

2015 (6)

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
[Crossref]

J. V. Erps, T. Ciuk, I. Pasternak, A. Krajewska, W. Strupinski, S. V. Put, G. V. Steenberge, K. Baert, H. Terryn, H. Thienpont, and N. Vermeulen, “Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides,” Opt. Express 23(20), 26639–26650 (2015).
[Crossref]

2014 (4)

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

2013 (4)

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref]

2012 (2)

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

2011 (5)

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

2009 (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

2008 (2)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

2003 (1)

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

2000 (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Ahn, S.

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

Akturk, S.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Anderson, T.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Ariando, A.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Aumanen, J.

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Baert, K.

Baldycheva, A.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

Barman, A. R.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Barnard, A. W.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Basko, D. M.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref]

Beams, R.

R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
[Crossref]

Bezares, F. J.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Bin In, J.

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Blees, M. K.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Bobrinetskiy, I. I.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Bøggild, P.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Bok Park, J.

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Borowiec, A.

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

Bruna, M.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

Buron, J. D.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Caldwell, J. D.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Cançado, L. G.

R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Centeno, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Chen, F.

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

Cheng, C.

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Cheng, Z.

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Chun, H.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Ciuk, T.

Cormode, D.

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

Courvoisier, F.

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

Currie, M.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Deminskyi, P.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

Dhar, S.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Dong, T.

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Dresselhaus, G.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

Dresselhaus, M. S.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

Dudley, J. M.

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

Durkan, C.

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Emelianov, A. V.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Erps, J. V.

Feng, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

Ferrari, A. C.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Geim, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Grigoropoulos, C. P.

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Guo, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Han, Q.

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Haugen, H. K.

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

He, R.

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

Huang, P. Y.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Ijäs, M.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

Ilday, F.Ö.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jeon, H.

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Jessen, B. S.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Jiang, L.

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Johansson, A.

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kalita, G.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Kevek, J. W.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Kobrin, B.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Kocabas, C.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

Koivistoinen, J.

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Kolesov, R.

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Kovalska, E.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

Krajewska, A.

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Lacourt, P.-A.

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

LeRoy, B. J.

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

Li, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

Li, W.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

Loh, M.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Mackenzie, D. M. A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

MacKenzie, M.

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

Malard, L. M.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McEuen, P. L.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

McGill, K. L.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Muller, D. A.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Myllyperkiö, P.

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Namba, Y.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Neto, B.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Newhouse-Illige, T.

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

Ni, G. X.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Novoselov, K. S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Novotny, L.

R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
[Crossref]

O’Neill, W.

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Otero, N.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Ott, A. K.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

Ozyilmaz, T.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Park, J. B.

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

Pasternak, I.

Pavlov, I.

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Pesquera, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Petersen, D. H.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Pettersson, M.

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Pimenta, M. A.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Put, S. V.

Qi, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

Qi, L.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Qian, X.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

Qu, L.

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Roberts, A.

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

Roberts, S. P.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Robinson, J.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Romero, C.

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

Romero, P. M.

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

Rose, P. A.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Rubhausen, A. H. C.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Rusydi, K. P.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Ruyack, A. R.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Sahin, R.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Sandhu, A. S.

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

Sassi, U.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Silajdzic, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Simsek, E.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Sparkes, M.

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Steenberge, G. V.

Stöhr, R. J.

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Strupinski, W.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Tadjer, M.

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

Terryn, H.

Thienpont, H.

Tong, L.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Tripathy, S.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Umeno, M.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Vázquez de Aldana, J. R.

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

Venkatesan,

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Vermeulen, N.

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Wakita, K.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Wang, X.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Wang, Y.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Weatherly, G. C.

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

Wetzel, B.

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

Whelan, P. R.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

Wrachtrup, J.

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Wu, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Xia, K.

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Xie, C.

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

Xu, X. F.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yoo, J.-H.

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Yoon, D.

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

Yu, S.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Zheng, Y.

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Zurutuza, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

2D Mater. (1)

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
[Crossref]

ACS Nano (3)

M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, “Doping Dependence of the Raman Spectrum of Defected Graphene,” ACS Nano 8(7), 7432–7441 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene Plasmonics for Terahertz to Mid-Infrared Applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

R. J. Stöhr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

ACS Omega (1)

E. Kovalska, I. Pavlov, P. Deminskyi, A. Baldycheva, F.Ö. Ilday, and C. Kocabas, “NLL-Assisted Multilayer Graphene Patterning,” ACS Omega 3(2), 1546–1554 (2018).
[Crossref]

Adv. Mater. (1)

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D Materials for Optical Modulation: Challenges and Opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

AIP Adv. (1)

S. Dhar, A. R. Barman, G. X. Ni, X. Wang, X. F. Xu, Y. Zheng, S. Tripathy, A. Ariando, K. P. Rusydi, M. Loh, A. H. C. Rubhausen, B. Neto, T. Őzyilmaz, and Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Adv. 1(2), 022109 (2011).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

A. Borowiec, M. MacKenzie, G. C. Weatherly, and H. K. Haugen, “Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 77(3–4), 411–417 (2003).
[Crossref]

Appl. Phys. Lett. (7)

A. Roberts, D. Cormode, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
[Crossref]

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

B. Wetzel, C. Xie, P.-A. Lacourt, J. M. Dudley, and F. Courvoisier, “Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams,” Appl. Phys. Lett. 103(24), 241111 (2013).
[Crossref]

J.-H. Yoo, J. Bin In, J. Bok Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

M. Currie, J. D. Caldwell, F. J. Bezares, J. Robinson, T. Anderson, H. Chun, and M. Tadjer, “Quantifying pulsed laser induced damage to graphene,” Appl. Phys. Lett. 99(21), 211909 (2011).
[Crossref]

C. Cheng, R. He, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Spontaneous micro-modification of single-layer graphene induced by femtosecond laser irradiation,” Appl. Phys. Lett. 111(24), 241901 (2017).
[Crossref]

I. I. Bobrinetskiy, A. V. Emelianov, N. Otero, and P. M. Romero, “Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions,” Appl. Phys. Lett. 107(4), 043104 (2015).
[Crossref]

J. Laser Appl. (1)

T. Dong, M. Sparkes, C. Durkan, and W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

J. Phys.: Condens. Matter (1)

R. Beams, L. G. Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys.: Condens. Matter 27(8), 083002 (2015).
[Crossref]

Light: Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Mater. Lett. (1)

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Nano Today (1)

Y. Zhao, Q. Han, Z. Cheng, L. Jiang, and L. Qu, “Integrated graphene systems by laser irradiation for advanced devices,” Nano Today 12, 14–30 (2017).
[Crossref]

Nanoscale (2)

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref]

J. Aumanen, A. Johansson, J. Koivistoinen, P. Myllyperkiö, and M. Pettersson, “Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation,” Nanoscale 7(7), 2851–2855 (2015).
[Crossref]

Nat. Nanotechnol. (2)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F.Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Nature (1)

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5–6), 51–87 (2009).
[Crossref]

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref]

Small (1)

J.-H. Yoo, J. B. Park, S. Ahn, and C. P. Grigoropoulos, “Laser-Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform,” Small 9(24), 4269–4275 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Micromachining set-up including an 80 MHz Ti:sapphire laser with 100 fs pulse duration focused onto the graphene sample. (b) Optical microscope image of a single ablated graphene dot shows a clean ablated area. (c) Optical microscope image of ablated line on graphene layer.
Fig. 2.
Fig. 2. (a) Optical microscope image of ablated dots in a single layer graphene for increasing power values from 0.97 W to 1.78 W. (b) Corresponding ablated dot diameter for fluence values between 9.6 mJ/cm2 and 17.6 mJ/cm2, respectively, which leads to a minimum ablation threshold fluence for higher pulse energies of 3.85 mJ/cm2.
Fig. 3.
Fig. 3. (a) Optical microscope image of an ablated graphene hole grid where each column corresponds to a larger offset in 0.001 inch steps, starting from the right and increasing towards the left. (b) Evolution of measured diameter of modified graphene plotted against the required ablation threshold, corresponding to an increasing offset from the focusing lens from sample at an average power of 1.1 W. (c) Optical microscope image of fully ablated dot with a corresponding ablation threshold fluence of Fth = 3.8 mJ/cm2. (d) Optical microscope image of modified graphene area associated with an incident fluence of F0 = 3.4 mJ/cm2.
Fig. 4.
Fig. 4. Raman spectroscopy evolution of an ablated graphene hole exposed to a laser fluence of 11.1 mJ/cm2. For a spatial radially symmetric offset ∼1.2 µm, the D’ peak signature becomes visible, indicating the generation of defects close to the hole edge. (b) Selected Raman spectra for different positions show the growth and subsequent decrease of the defect-related D band. (c) The peak intensity of each representative band for graphene is plotted together with the ratio of I(D)/I(G) which characterizes defect states.
Fig. 5.
Fig. 5. (a) Raman spectroscopy on graphene exposed to a laser fluence of 3.4 mJ/cm2 that resulted in a modified graphene section but not a fully ablated hole. (b) Raman spectra for different spatial positions. The D’ peak is particularly strong and comparable to the D and G peaks in the modified region. The presence of a remaining G band indicates that the underlying graphene structure is maintained in this regime. (c) The peak intensity of the representative Raman bands are shown. The modified graphene region is characterized by a fairly flat plateau region extending over ∼ 4 µm where the intensity ratio I(D)/I(G) varies between values of 2.5 and 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D 2 = 2 w 0 2 ln ( F 0 / F t h ) with F 0 = P a v e f r e p π w 0 2
L D 2 = 4.3 10 3 E L 4 [ I ( D ) I ( G ) ] 1
n D = 1 π L D 2 = 7.3 10 9 E L 4 I ( D ) I ( G )

Metrics