Abstract

We demonstrate efficient single- and multi-wavelength lasers at 2 $\mu$m exploiting Brillouin scattering in a SM1950 fiber. Using a SM1950 fiber as the Brillouin gain medium, higher output Stokes power and slope efficiency are achieved for a threshold pump power that is three to four times lower than the Brillouin lasing threshold in a longer length SMF with similar or higher feedback factors. We realize single and multi-Stokes Brillouin lasers with low threshold pump powers of $\sim$ 130 mW and $\sim$ 385 mW, respectively, using a 100 m SM1950 fiber ring and a Fabry-Perot resonator. For a fixed SM1950 cavity length, as the feedback factor is varied from 90$\%$ to 50$\%$, the output Stokes power and slope efficiency increased four times with only a small penalty on lasing threshold. For multi-Stokes Brillouin lasing, we observe 14 lines, including four-wave mixing components, at a maximum pump power of 822 mW. To the best of our knowledge, this is the first detailed study of Brillouin lasing at 2 $\mu$m that studies the effect of different cavity parameters such as length, feedback factor, and resonator geometry on Brillouin lasing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intracavity Brillouin gain characterization based on cavity ringdown spectroscopy

Ananthu Sebastian, Stéphane Trebaol, and Pascal Besnard
OSA Continuum 2(12) 3539-3545 (2019)

High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings

Ting Feng, Meili Jiang, Yating Ren, Mingming Wang, Fengping Yan, Yuping Suo, and X. Steve Yao
OSA Continuum 2(9) 2526-2538 (2019)

Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals

S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey
Opt. Lett. 28(20) 1888-1890 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
    [Crossref]
  2. S. D. Jackson and T. A. King, “Theoretical modeling of tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  3. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
    [Crossref]
  4. Z. Li, A. Heidt, J. Daniel, Y. Jung, S. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 $\mu$μm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref]
  5. N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 w thulium fiber laser at 1.91 $\mu$μm,” Lasers Surg. Med. 36(1), 52–56 (2005).
    [Crossref]
  6. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mathrm {\mu }$μm,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref]
  7. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
    [Crossref]
  8. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
    [Crossref]
  9. L. Stokes, M. Chodorow, and H. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [Crossref]
  10. K. S. Abedin, “Brillouin amplification and lasing in a single-mode as2se3 chalcogenide fiber,” Opt. Lett. 31(11), 1615–1617 (2006).
    [Crossref]
  11. S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
    [Crossref]
  12. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength l-band Brillouin–erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
    [Crossref]
  13. M. Al-Mansoori, M. K. Abd-Rahman, F. M. Adikan, and M. Mahdi, “Widely tunable linear cavity multiwavelength Brillouin-erbium fiber lasers,” Opt. Express 13(9), 3471–3476 (2005).
    [Crossref]
  14. I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
    [Crossref]
  15. S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
    [Crossref]
  16. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
    [Crossref]
  17. W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
    [Crossref]
  18. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
    [Crossref]
  19. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  20. M. Dong and H. G. Winful, “Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation,” Phys. Rev. A 93(4), 043851 (2016).
    [Crossref]
  21. M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
    [Crossref]
  22. X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.
  23. R. Pant, E. Li, D.-Y. Choi, C. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder stokes generation,” Opt. Lett. 36(18), 3687–3689 (2011).
    [Crossref]
  24. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
    [Crossref]
  25. Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
    [Crossref]
  26. H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
    [Crossref]
  27. N. A. B. Ahmad, S. H. Dahlan, N. A. Cholan, H. Ahmad, and Z. C. Tiu, “Switchable 10, 20, and 30 ghz region photonics-based microwave generation using thulium-doped fluoride fiber laser,” J. Opt. Soc. Am. B 35(7), 1603–1608 (2018).
    [Crossref]
  28. S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an sbs frequency comb and self phase-locking,” Opt. Express 20(17), 19455–19462 (2012).
    [Crossref]
  29. T. F. Büttner, M. Merklein, I. V. Kabakova, D. D. Hudson, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Phase-locked, chip-based, cascaded stimulated Brillouin scattering,” Optica 1(5), 311–314 (2014).
    [Crossref]
  30. T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
    [Crossref]
  31. V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
    [Crossref]
  32. K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2$\mu$μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
    [Crossref]
  33. Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2$\mu$μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
    [Crossref]
  34. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
    [Crossref]
  35. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27(11), 927–929 (2002).
    [Crossref]
  36. N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
    [Crossref]
  37. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes i: basics,” IEEE J. Sel. Top. Quantum Electron 12(1), 3–14 (2006).
    [Crossref]
  38. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
    [Crossref]
  39. M. W. Bowers and R. W. Boyd, “Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation,” IEEE J. Quantum Electron. 34(4), 634–644 (1998).
    [Crossref]

2019 (1)

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

2018 (3)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
[Crossref]

N. A. B. Ahmad, S. H. Dahlan, N. A. Cholan, H. Ahmad, and Z. C. Tiu, “Switchable 10, 20, and 30 ghz region photonics-based microwave generation using thulium-doped fluoride fiber laser,” J. Opt. Soc. Am. B 35(7), 1603–1608 (2018).
[Crossref]

2017 (2)

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

2016 (3)

M. Dong and H. G. Winful, “Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation,” Phys. Rev. A 93(4), 043851 (2016).
[Crossref]

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

2015 (2)

T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

2014 (4)

2013 (3)

2012 (3)

2011 (1)

2009 (1)

2007 (1)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

2006 (2)

K. S. Abedin, “Brillouin amplification and lasing in a single-mode as2se3 chalcogenide fiber,” Opt. Lett. 31(11), 1615–1617 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes i: basics,” IEEE J. Sel. Top. Quantum Electron 12(1), 3–14 (2006).
[Crossref]

2005 (3)

M. Al-Mansoori, M. K. Abd-Rahman, F. M. Adikan, and M. Mahdi, “Widely tunable linear cavity multiwavelength Brillouin-erbium fiber lasers,” Opt. Express 13(9), 3471–3476 (2005).
[Crossref]

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 w thulium fiber laser at 1.91 $\mu$μm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref]

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mathrm {\mu }$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

2002 (1)

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

1999 (2)

1998 (1)

M. W. Bowers and R. W. Boyd, “Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation,” IEEE J. Quantum Electron. 34(4), 634–644 (1998).
[Crossref]

1991 (1)

1990 (1)

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

1982 (1)

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Abd-Rahman, M. K.

Abedin, K. S.

Adikan, F. M.

Ahmad, H.

H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
[Crossref]

N. A. B. Ahmad, S. H. Dahlan, N. A. Cholan, H. Ahmad, and Z. C. Tiu, “Switchable 10, 20, and 30 ghz region photonics-based microwave generation using thulium-doped fluoride fiber laser,” J. Opt. Soc. Am. B 35(7), 1603–1608 (2018).
[Crossref]

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

Ahmad, N. A. B.

Aidit, S.

H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
[Crossref]

Aidit, S. N.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

Alam, S.

Al-Mansoori, M.

Al-Mansoori, M. H.

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength l-band Brillouin–erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[Crossref]

Al-Nassri, S.

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

Al-Sheriyani, A.

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

Amzajerdian, F.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Bai, X.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Barnes, B. W.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Baynes, F. N.

Behunin, R.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Behunin, R. O.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Belardi, W.

Bennett, P.

Beyon, J. Y.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Blumenthal, D. J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Bose, D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Bowers, M. W.

M. W. Bowers and R. W. Boyd, “Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation,” IEEE J. Quantum Electron. 34(4), 634–644 (1998).
[Crossref]

Boyd, R. W.

M. W. Bowers and R. W. Boyd, “Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation,” IEEE J. Quantum Electron. 34(4), 634–644 (1998).
[Crossref]

Broderick, N.

Brodnik, G. M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Büttner, T. F.

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
[Crossref]

T. F. Büttner, M. Merklein, I. V. Kabakova, D. D. Hudson, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Phase-locked, chip-based, cascaded stimulated Brillouin scattering,” Optica 1(5), 311–314 (2014).
[Crossref]

Büttner, T. F. S.

Chauhan, N.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Chen, T.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Chodorow, M.

Choi, D.-Y.

Cholan, N. A.

Cole, D. C.

Dahlan, S. H.

Daniel, J.

Debbarma, S.

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Diddams, S. A.

Dong, M.

M. Dong and H. G. Winful, “Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation,” Phys. Rev. A 93(4), 043851 (2016).
[Crossref]

Eggleton, B. J.

Ezekiel, S.

Fried, N. M.

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 w thulium fiber laser at 1.91 $\mu$μm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref]

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mathrm {\mu }$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Fu, S.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Green, A. A.

Gundavarapu, S.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Hanna, D.

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

Hasoon, F. N.

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

Hassan, N. A.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

He, S.

Heidt, A.

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Hu, K.

Hudson, D. D.

Huffman, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Ibsen, M.

Iezzi, V. L.

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an sbs frequency comb and self phase-locking,” Opt. Express 20(17), 19455–19462 (2012).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes i: basics,” IEEE J. Sel. Top. Quantum Electron 12(1), 3–14 (2006).
[Crossref]

Ismail, M. F. B.

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

Jackson, S. D.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Judge, A. C.

T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
[Crossref]

Jung, Y.

Kabakova, I. V.

Kashyap, R.

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an sbs frequency comb and self phase-locking,” Opt. Express 20(17), 19455–19462 (2012).
[Crossref]

Kavaya, M. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

King, T. A.

Kittlaus, E. A.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Koch, G. J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Lee, H.

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Lee, J. H.

Lefrancois, S.

Li, E.

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref]

Li, Z.

Loh, W.

Loranger, S.

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an sbs frequency comb and self phase-locking,” Opt. Express 20(17), 19455–19462 (2012).
[Crossref]

Luo, X.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Luo, Y.

Luther-Davies, B.

Madden, S. J.

Mahdi, M.

Mahdi, M. A.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes i: basics,” IEEE J. Sel. Top. Quantum Electron 12(1), 3–14 (2006).
[Crossref]

Merklein, M.

Monro, T.

Monro, T. M.

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mathrm {\mu }$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Nelson, K. D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Nguyen, H. P. T.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Nohava, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Ohishi, Y.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Otterstrom, N. T.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Pant, R.

Papp, S. B.

Percival, R.

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

Petros, M.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Pinho, C.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Poulton, C.

Poulton, C. G.

T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
[Crossref]

Puckett, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Qiu, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Quinlan, F. J.

Rakich, P. T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Richardson, D.

Richardson, D. J.

Saini, T. S.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Salit, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Shaw, H.

Sheng, Q.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Shi, G.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Shi, W.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Si, L.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Singh, U. N.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Smart, R.

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

Smith, S. P.

Stokes, L.

Suzuki, T.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Tang, Y.

Tao, K.

Tehranchi, A.

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

Tiu, Z.

H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
[Crossref]

Tiu, Z. C.

N. A. B. Ahmad, S. H. Dahlan, N. A. Cholan, H. Ahmad, and Z. C. Tiu, “Switchable 10, 20, and 30 ghz region photonics-based microwave generation using thulium-doped fluoride fiber laser,” J. Opt. Soc. Am. B 35(7), 1603–1608 (2018).
[Crossref]

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

Tropper, A.

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

Tuan, T. H.

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Vahala, K. J.

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Wang, S.

Wang, X.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Wang, Y.

Wang, Z.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Winful, H. G.

M. Dong and H. G. Winful, “Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation,” Phys. Rev. A 93(4), 043851 (2016).
[Crossref]

Wu, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Xiao, H.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Xu, J.

Yang, J.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Yao, J.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Yu, J.

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Yusoff, Z.

Zarinetchi, F.

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Zhan, L.

Zhang, H.

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Zhou, P.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

IEEE J. Quantum Electron. (2)

Z. C. Tiu, S. N. Aidit, N. A. Hassan, M. F. B. Ismail, and H. Ahmad, “Single and double Brillouin frequency spacing multi-wavelength Brillouin erbium fiber laser with micro-air gap cavity,” IEEE J. Quantum Electron. 52(9), 1–5 (2016).
[Crossref]

M. W. Bowers and R. W. Boyd, “Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation,” IEEE J. Quantum Electron. 34(4), 634–644 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes i: basics,” IEEE J. Sel. Top. Quantum Electron 12(1), 3–14 (2006).
[Crossref]

IEEE Photonics J. (2)

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” IEEE Photonics J. 6(1), 1–7 (2014).
[Crossref]

S. Fu, W. Shi, H. Zhang, Q. Sheng, G. Shi, X. Bai, and J. Yao, “Linewidth-narrowed, linear-polarized single-frequency thulium-doped fiber laser based on stimulated Brillouin scattering effect,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mathrm {\mu }$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

M. H. Al-Mansoori, A. Al-Sheriyani, S. Al-Nassri, and F. N. Hasoon, “Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber,” Laser Phys. 27(6), 065112 (2017).
[Crossref]

Lasers Surg. Med. (1)

N. M. Fried, “High-power laser vaporization of the canine prostate using a 110 w thulium fiber laser at 1.91 $\mu$μm,” Lasers Surg. Med. 36(1), 52–56 (2005).
[Crossref]

Nat. Commun. (1)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

Nat. Photonics (2)

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

New J. Phys. (1)

V. L. Iezzi, T. F. Büttner, A. Tehranchi, S. Loranger, I. V. Kabakova, B. J. Eggleton, and R. Kashyap, “Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser,” New J. Phys. 18(5), 055003 (2016).
[Crossref]

Opt. Commun. (1)

D. Hanna, R. Percival, R. Smart, and A. Tropper, “Efficient and tunable operation of a tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[Crossref]

Opt. Eng. (1)

G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 $\mu$μm doppler lidar for wind measurements,” Opt. Eng. 46(11), 116201 (2007).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

H. Ahmad, S. Aidit, and Z. Tiu, “Multi-wavelength praseodymium fiber laser using stimulated Brillouin scattering,” Opt. Laser Technol. 99, 52–59 (2018).
[Crossref]

Opt. Lett. (9)

R. Pant, E. Li, D.-Y. Choi, C. Poulton, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder stokes generation,” Opt. Lett. 36(18), 3687–3689 (2011).
[Crossref]

K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2$\mu$μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
[Crossref]

Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2$\mu$μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
[Crossref]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27(11), 927–929 (2002).
[Crossref]

N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
[Crossref]

I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
[Crossref]

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
[Crossref]

L. Stokes, M. Chodorow, and H. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
[Crossref]

K. S. Abedin, “Brillouin amplification and lasing in a single-mode as2se3 chalcogenide fiber,” Opt. Lett. 31(11), 1615–1617 (2006).
[Crossref]

Optica (2)

Phys. Rev. A (2)

M. Dong and H. G. Winful, “Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation,” Phys. Rev. A 93(4), 043851 (2016).
[Crossref]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Sci. Rep. (1)

T. F. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing,” Sci. Rep. 4(1), 5032 (2015).
[Crossref]

Science (1)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Other (1)

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Brillouin comb generation in a highly nonlinear tellurite single mode fiber,” in Frontiers in Optics / Laser Science, (Optical Society of America, 2018), p. JW4A.33.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The experimental setup used for generation of Brillouin laser, OC-1: optical coupler(50-50 or 90-10), OC-2: 90-10 Splitter, TDFA: Thulium doped fiber amplifier, OSA: Optical spectrum analyzer, PM: Power meter, FUT: Fiber under test. Mode field profile of SMF-28e (b) and SM1950 (c) fibers obtained using COMSOL.
Fig. 2.
Fig. 2. Brillouin laser optical spectra for different combinations of fiber-length and feedback factor: (a) 100 meter with 50% feedback, (b) 100 meter with 90% feedback, (c) 50 meter with 50% feedback and (d) 50 meter with 90% feedback.
Fig. 3.
Fig. 3. Output Stokes power as a function of input pump power for different cavity configurations: (a) 100 m ring resonator with 50% (black) and 90% (red) feedback and (b) 50 m ring resonator with 50% (black) and 90% (red) feedback.
Fig. 4.
Fig. 4. The experimental setup used for generation of Brillouin combs. A 2 $\mu$ m laser amplified using a low power TDFA acts as the input to a high power TDFA through OC-1: 50/50 coupler. OC-2: 99/1 splitter, OC-3: 90-10 splitter.
Fig. 5.
Fig. 5. (a)Optical spectra of cascaded SBS as the function of TDFA output measured at 1% port of OC2 in Fig. 4. There is a 2 dB coupling loss also present in the OSA arm. (b)Evolution of the output power for the first three Stokes components, measured using OSA connected to 10% port of OC-3, as a function of input pump power measured using power meter on 90% port of OC-3.

Tables (1)

Tables Icon

Table 1. Comparison of theoretical and observed threshold for various cavity configurations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G B t h = g B P t h L e f f A e f f 21
Δ ν S t o k e s = Δ ν p u m p ( 1 + π Δ ν B c l n R / n L ) 2

Metrics