Abstract

In this paper, we first investigated the nonlinear optical properties of Cu1.8S nanocrystals (NCs) by using Z-scan and balanced twin detector measurement technologies, and then demonstrated a passively Q-switched laser at the 2 µm wavelength. The Cu1.8S NCs were synthesized by a solventless thermolysis method and then mixed with sodium carboxymethylcellulose to form the Cu1.8S NCs film. The film exhibited broadband surface plasmon resonance (SPR) absorption from 800 nm to 2000 nm. By incorporating the Cu1.8S NCs film into a thulium doped fiber laser cavity pumped by a 1570 nm fiber laser, stable passive Q-switching at ∼1975.16 nm was obtained for a threshold pump power of ∼931 mW, and ∼3.4 µs pulse duration with a pulse repetition rate of ∼35.14 kHz was also obtained for a pump power of ∼996 mW. Our results showed that Cu1.8S NCs is a promising saturable absorber (SA) for pulse laser generation at the 2 µm wavelength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Au nanocages saturable absorber for 3-µm mid-infrared pulsed fiber laser with a wide wavelength tuning range

Qingru Li, Chen Wei, Hao Chi, Liqiang Zhou, Han Zhang, Hua Huang, and Yong Liu
Opt. Express 27(21) 30350-30359 (2019)

Gold nanowires with surface plasmon resonance as saturable absorbers for passively Q-switched fiber lasers at 2 µm

Siqing Li, Zhe Kang, Nan Li, Heng Jia, Mingyi Liu, Jiaxing Liu, Ningning Zhou, Weiping Qin, and Guanshi Qin
Opt. Mater. Express 9(5) 2406-2414 (2019)

High efficiency nanosecond passively Q-switched 2.3 µm Tm:YLF laser using a ReSe2-based saturable output coupler

Shiqiang Wang, Haitao Huang, Haiwei Chen, Xuan Liu, Shande Liu, Jinlong Xu, and Deyuan Shen
OSA Continuum 2(5) 1676-1682 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
    [Crossref]
  2. Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
    [Crossref]
  3. S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
    [Crossref]
  4. I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
    [Crossref]
  5. T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
    [Crossref]
  6. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref]
  7. J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
    [Crossref]
  8. C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
    [Crossref]
  9. J. H. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref]
  10. L. Brus, “Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy,” Acc. Chem. Res. 41(12), 1742–1749 (2008).
    [Crossref]
  11. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  12. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmin absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  13. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [Crossref]
  14. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref]
  15. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
    [Crossref]
  16. Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
    [Crossref]
  17. X. L. Wang and M. T. Swihart, “Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2-xS and CuxInyS nanocrystals,” Chem. Mater. 27(5), 1786–1791 (2015).
    [Crossref]
  18. F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
    [Crossref]
  19. A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
    [Crossref]
  20. Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
    [Crossref]
  21. M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
    [Crossref]
  22. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 µm wavelength,” Opt. Lett. 37(11), 2085–2087 (2012).
    [Crossref]
  23. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  24. Y. Wang, S. Alam, E. D. Obraztsova, A. S. Pozharov, S. Y. Set, and S. Yamashita, “Generation of stretched pulses and dissipative solitons at 2 µm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers,” Opt. Lett. 41(16), 3864–3867 (2016).
    [Crossref]
  25. Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  26. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
    [Crossref]
  27. X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
    [Crossref]
  28. B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
    [Crossref]
  29. L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
    [Crossref]
  30. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  31. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and T,-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref]
  32. J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
    [Crossref]
  33. W. Shi, E. B. Petersen, D. T. Nguyen, Z. D. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “220 µJ monolithic single-frequency Q-switched fiber laser at 2 µm by using highly Tm-doped germinate fibers,” Opt. Lett. 36(18), 3575–3577 (2011).
    [Crossref]
  34. A. F. El-Sherif and T. A. King, “High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 µm,” Opt. Lett. 28(1), 22–24 (2003).
    [Crossref]
  35. D. F. Fan, C. B. Mou, X. K. Bai, S. F. Wang, N. Chen, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold nanosphere based saturable absorber,” Opt. Express 22(15), 18537–18542 (2014).
    [Crossref]
  36. J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
    [Crossref]
  37. M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
    [Crossref]
  38. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
    [Crossref]
  39. M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
    [Crossref]

2019 (1)

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

2018 (2)

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

J. H. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

2017 (2)

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

2016 (2)

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Y. Wang, S. Alam, E. D. Obraztsova, A. S. Pozharov, S. Y. Set, and S. Yamashita, “Generation of stretched pulses and dissipative solitons at 2 µm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers,” Opt. Lett. 41(16), 3864–3867 (2016).
[Crossref]

2015 (8)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and T,-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

X. L. Wang and M. T. Swihart, “Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2-xS and CuxInyS nanocrystals,” Chem. Mater. 27(5), 1786–1791 (2015).
[Crossref]

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

2014 (3)

D. F. Fan, C. B. Mou, X. K. Bai, S. F. Wang, N. Chen, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold nanosphere based saturable absorber,” Opt. Express 22(15), 18537–18542 (2014).
[Crossref]

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref]

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

2013 (3)

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

2012 (5)

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 µm wavelength,” Opt. Lett. 37(11), 2085–2087 (2012).
[Crossref]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

2011 (1)

2010 (2)

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

2009 (1)

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

2008 (3)

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

L. Brus, “Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy,” Acc. Chem. Res. 41(12), 1742–1749 (2008).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

2007 (2)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref]

B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
[Crossref]

2005 (1)

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

2003 (1)

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmin absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Alam, S.

Alivisatos, A. P.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Bai, X. K.

Bai, Z. L.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Barthel, M. J.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Bi, G.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Brus, L.

L. Brus, “Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy,” Acc. Chem. Res. 41(12), 1742–1749 (2008).
[Crossref]

Burda, C.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Cai, Z. P.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Casu, A.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Chang, Y. M.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Chavez-Pirson, A.

Chen, L.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Chen, N.

Chen, X.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Chen, Y.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Chu, Y. Z.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Comin, A.

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref]

Como, E.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Crozier, K. B.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

D’Abbusco, M. S.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Dai, N.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Davis, T. J.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

Debnath, P.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Deng, L. G.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Donato, F. D.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Dong, W. J.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Du, J.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmin absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

El-Sherif, A. F.

Fan, D. F.

Feldmann, J.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Fu, C. H.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Fu, W. P.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Gao, S. F.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Gao, W. L.

Gao, X. G.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Genovese, A.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Ghosh, S.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref]

Gomez, D. E.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

Guardia, P.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Guo, Q. B.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Guo, Y.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Hasan, T.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and T,-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

Howe, R. C. T.

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and T,-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Hu, G.

Hu, G. H.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Hu, G. Q.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Huang, C. Y.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Huang, Y. Z.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Huo, Y. Y.

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Jia, Z. X.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Jiang, C. Y.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Jiang, G. B.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Jiang, S. Z.

Jung, M.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Kang, J.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Kang, Z.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Kelleher, E. J. R.

King, T. A.

Koo, J.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Kriege, I.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Lee, J. H.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Lei, F. C.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

Li, B. X.

B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
[Crossref]

Li, C. H.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

J. H. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

Li, H. B.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Li, L. L.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Li, N.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Li, Q.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Li, S. Q.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Li, Y. Y.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Li, Z.

Li, Z. R.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Lin, L.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmin absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, A. H.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Liu, H. Y.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Liu, J.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Liu, L.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Liu, M.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Liu, M. Y.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Liu, T. L.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Liu, X. F.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Liu, X. Y.

Liu, Y. F.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Liu, Y. J.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Liu, Y. Y.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Liu, Z.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Lou, Y. B.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Luo, Z. C.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Luo, Z. Q.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Lv, P.

Ma, J.

Ma, W.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

Man, B. Y.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Manna, L.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref]

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Meng, H.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Meng, X. W.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Millstone, J. E.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Mirkin, C. A.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Miszta, K.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Mou, C. B.

Mulvaney, P.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

Nguyen, D. T.

Obraztsova, E. D.

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref]

Pan, H. C.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Park, S.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Pellegrino, T.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Peng, H.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Peng, J.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Petersen, E. B.

Peyghambarian, N.

Pozharov, A. S.

Prato, M.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Pugliese, G.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Qian, L. J.

Qin, G. S.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Qin, L. D.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Qin, W. P.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Qin, Z. P.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Qiu, J. R.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Qiu, X. F.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Riedinger, A.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Rodriguez-Fernandez, J.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Runcorn, T. H.

Sadtler, B.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sangregorio, C.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Schaller, R. D.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Schatz, G. C.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Schonbrun, E.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Set, S. Y.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, L. J.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Shi, W.

Shuford, K. L.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Si, H. P.

Song, H. W.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Song, Y. W.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Sottini, S.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

Su, S.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

Sun, Y.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Sun, Z. C.

Swihart, M. T.

X. L. Wang and M. T. Swihart, “Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2-xS and CuxInyS nanocrystals,” Chem. Mater. 27(5), 1786–1791 (2015).
[Crossref]

Talapin, D. V.

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Tan, L. F.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Tang, D. Y.

Torrisi, F.

Tu, C. Y.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vernon, K. C.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

Wadia, C.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

Wang, F.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Wang, H. J.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

Wang, J. Y.

Wang, L.

Wang, P.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Wang, Q. K.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Wang, S. F.

Wang, S. H.

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Wang, X. H.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Wang, X. L.

X. L. Wang and M. T. Swihart, “Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2-xS and CuxInyS nanocrystals,” Chem. Mater. 27(5), 1786–1791 (2015).
[Crossref]

Wang, Y.

Wei, D. M.

Wei, T. X.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wen, S. C.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Weng, J.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Woodward, R. I.

Wu, J. Y.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Wu, Y.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

Xiang, Y. J.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Xie, G. Q.

Xie, H. Y.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Xie, Y.

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
[Crossref]

Xiu, X. W.

Xu, B.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, C. W.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Xu, D.

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

Xu, H. Y.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, J.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Xu, J. H.

Xu, J. L.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Xu, S. C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Xu, Y. Y.

Xue, Y.

B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
[Crossref]

Yamashita, S.

Yang, C.

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yao, Y. H.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Yao, Z. D.

Yi, J.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

You, Z. Y.

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Yu, H. H.

Yu, J.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

J. H. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

Yu, J. R.

Yuan, P.

Zeng, X. L.

Zhang, C.

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

J. H. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Zhang, H.

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Zhang, H. J.

Zhang, M.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Zhang, S.

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Zhang, T.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Zhang, Y.

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

Zhao, C. J.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

Zhao, X. F.

Zhao, Y. X.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Zheng, Z.

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Zhong, H. Z.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Zhong, M.

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Zhou, D. L.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Zhu, J. J.

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

Zou, B. S.

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Acc. Chem. Res. (1)

L. Brus, “Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy,” Acc. Chem. Res. 41(12), 1742–1749 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

T. X. Wei, Y. F. Liu, W. J. Dong, Y. Zhang, C. Y. Huang, Y. Sun, X. Chen, and N. Dai, “Surface-dependent localized surface plasmon resonances in CuS nanodisks,” ACS Appl. Mater. Interfaces 5(21), 10473–10477 (2013).
[Crossref]

ACS Nano (2)

S. H. Wang, A. Riedinger, H. B. Li, C. H. Fu, H. Y. Liu, L. L. Li, T. L. Liu, L. F. Tan, M. J. Barthel, G. Pugliese, F. D. Donato, M. S. D’Abbusco, X. W. Meng, L. Manna, H. Meng, and T. Pellegrino, “Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects,” ACS Nano 9(2), 1788–1800 (2015).
[Crossref]

Q. B. Guo, Y. H. Yao, Z. C. Luo, Z. P. Qin, G. Q. Xie, M. Liu, J. Kang, S. Zhang, G. Bi, X. F. Liu, and J. R. Qiu, “Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals,” ACS Nano 10(10), 9463–9469 (2016).
[Crossref]

Appl. Phys. Lett. (2)

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010).
[Crossref]

Chem. Mater. (2)

X. L. Wang and M. T. Swihart, “Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2-xS and CuxInyS nanocrystals,” Chem. Mater. 27(5), 1786–1791 (2015).
[Crossref]

L. Liu, H. Z. Zhong, Z. L. Bai, T. Zhang, W. P. Fu, L. J. Shi, H. Y. Xie, L. G. Deng, and B. S. Zou, “Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties,” Chem. Mater. 25(23), 4828–4834 (2013).
[Crossref]

Chem. Rev. (1)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref]

Chem. Soc. Rev. (1)

A. Comin and L. Manna, “New materials for tunable plasmonic colloidal nanocrystals,” Chem. Soc. Rev. 43(11), 3957–3975 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (5)

F. Wang, Q. Li, L. Lin, H. Peng, Z. Liu, and D. Xu, “Monodisperse copper chalcogenide nanocrystals: controllable synthesis and the pinning of plasmonic resonance absorption,” J. Am. Chem. Soc. 137(37), 12006–12012 (2015).
[Crossref]

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a Quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[Crossref]

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, and L. Manna, “Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions,” J. Am. Chem. Soc. 135(46), 17630–17637 (2013).
[Crossref]

I. Kriege, C. Y. Jiang, J. Rodriguez-Fernandez, R. D. Schaller, D. V. Talapin, E. Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc. 134(3), 1583–1590 (2012).
[Crossref]

Y. X. Zhao, H. C. Pan, Y. B. Lou, X. F. Qiu, J. J. Zhu, and C. Burda, “Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides,” J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
[Crossref]

J. Lightwave Technol. (1)

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2 µm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Mater. Chem. C (1)

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmin absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. Phys. Chem. C (1)

B. X. Li, Y. Xie, and Y. Xue, “Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance,” J. Phys. Chem. C 111(33), 12181–12187 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, and F. C. Lei, “Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection,” J. Phys. Chem. Lett. 10(13), 3676–3680 (2019).
[Crossref]

Laser Phys. Lett. (2)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y. W. Song, and J. H. Lee, “An all fiberized, 1.89 µm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9(9), 669–673 (2012).
[Crossref]

Nano Lett. (2)

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of Copper (I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[Crossref]

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref]

Opt. Commun. (1)

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 µm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

RSC Adv. (1)

X. H. Wang, J. L. Xu, S. F. Gao, Y. Y. Liu, Z. Y. You, and C. Y. Tu, “A 2 micron passively Q-switched bulk state pulsed laser based on WS2,” RSC Adv. 7(75), 47565–47569 (2017).
[Crossref]

Sci. Rep. (2)

J. Du, Q. K. Wang, G. B. Jiang, C. W. Xu, C. J. Zhao, Y. J. Xiang, Y. Chen, S. C. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4(1), 6346 (2015).
[Crossref]

M. Zhang, G. H. Hu, G. Q. Hu, R. C. T. Howe, L. Chen, Z. Zheng, and T. Hasan, “Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber,” Sci. Rep. 5(1), 17482 (2015).
[Crossref]

Sens. Actuators, B (1)

C. Zhang, C. H. Li, J. Yu, S. Z. Jiang, S. C. Xu, C. Yang, Y. J. Liu, X. G. Gao, A. H. Liu, and B. Y. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a)TEM image and (b) XRD diffraction pattern of Cu1.8S NCs. The inset in Fig. 1(a): Photograph of the aqueous solution of Cu1.8S NCs.
Fig. 2.
Fig. 2. EDX analysis of Cu1.8S NCs (a) Cu element, (b) S element and (c) Atomic ratios of Cu to S.
Fig. 3.
Fig. 3. Absorption spectra of Cu1.8S NCs powder and Cu1.8S-NaCMC film.
Fig. 4.
Fig. 4. The nonlinear optical properties of the prepared Cu1.8S NCs film were investigated by an open-aperture Z-scan technique and balanced twin detector measurement technology, respectively. (a) Experiment setup of open aperture Z-scan measurements of Cu1.8S NCs sample at 1930nm. (b) The open-aperture Z-scan measurement of Cu1.8S NCs. (c) Setup of open saturable absorption characteristics measurements of Cu1.8S NCs sample. (d) Saturable absorption of Cu1.8S NCs.
Fig. 5.
Fig. 5. The experiment setup of the Cu1.8S NCs based Q-switched laser cavity.
Fig. 6.
Fig. 6. (a) Emission spectrum, (b) pulse train, (c) single pulse duration, and (d) the dependence of pulse width and repetition rate on pump power of Q-switched fiber laser at 1975.16 nm.
Fig. 7.
Fig. 7. Relationship between the output power and pump power of the Q-switched laser.
Fig. 8.
Fig. 8. Long-term stability of the Q-switched laser based on the Cu1.8S SA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) = 1 q 0 2 2 ( 1 + z 2 z 0 2 )

Metrics