Abstract

We propose a high fabrication tolerance and broadband silicon polarization beam splitter (PBS) by cascading point-symmetric 3-dB couplers designed using fast quasiadiabatic dynamics (FAQUAD). The FAQUAD strategy only requires access to a single control parameter, and it can shorten the conventional adiabatic designs, maintaining the broadband characteristic and robustness to fabrication errors. The 3-dB FAQUAD coupler for the TM0 mode is made invisible to the TE0 mode due to a large difference in their adiabaticity parameters. Moreover, the system of cascaded point-symmetric devices further enhances the bandwidth and fabrication tolerance of the FAQUAD PBS. The total length of the FAQUAD PBS is 89.4 µm. We find that the FAQUAD PBS exhibits > 10 dB extinction ratio (ER) for the input TM0 mode and the input TE0 mode over a bandwidth of 240 nm and 260 nm, with excess losses below 0.4 dB and 0.021 dB, respectively. The PBS also exhibits excellent fabrication tolerance, showing an ER > 24 dB and an excess loss < 0.19 dB for the TM0 mode, and an ER > 16.8 dB and an excess loss < 0.024 dB for the TE0 mode for waveguide width deviation from −100 nm to 100 nm. For silicon thickness variation from 210 nm to 230 nm, an ER > 15.3 dB and excess loss < 0.2 dB for the TM0 mode, and an ER > 15.9 dB and excess loss < 0.015 dB for the TE0 mode are observed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics

Hung-Ching Chung and Shuo-Yen Tseng
Opt. Express 26(8) 9655-9665 (2018)

Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers

Zeqin Lu, Yun Wang, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(23) 29413-29422 (2015)

Ultra-broadband and compact polarizing beam splitter in silicon photonics

Fang Zhang, Jiajiu Zheng, Yipeng Song, Weixi Liu, Peipeng Xu, and Arka Majumdar
OSA Continuum 3(3) 560-567 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  2. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  3. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
    [Crossref]
  4. Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
    [Crossref]
  5. M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
    [Crossref]
  6. D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
    [Crossref]
  7. D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
    [Crossref]
  8. Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
    [Crossref]
  9. P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
    [Crossref]
  10. Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
    [Crossref]
  11. H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40(9), 1885–1887 (2015).
    [Crossref]
  12. D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30(20), 3281–3287 (2012).
    [Crossref]
  13. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
    [Crossref]
  14. Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. chrostowski, “Wideband silicon photonics polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
    [Crossref]
  15. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
    [Crossref]
  16. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
    [Crossref]
  17. Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
    [Crossref]
  18. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
    [Crossref]
  19. S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
    [Crossref]
  20. H.-C. Chung, K. S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
    [Crossref]
  21. H.-C. Chung and S.-Y. Tseng, “ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics,” Opt. Express 26(8), 9655–9665 (2018).
    [Crossref]
  22. Y.-J. Hung, Z.-Y. Li, H.-C. Chung, F.-C. Liang, M.-Y. Jung, T.-H. Yen, and S.-Y. Tseng, “Mode evolution based silicon-on-insulator 3-dB coupler using fast quasiadiabatic dynamics,” Opt. Lett. 44(4), 815–818 (2019).
    [Crossref]
  23. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
    [Crossref]
  24. FIMMWAVE / FIMMPROP, Photon Design Ltd, http://www.photond.com .
  25. M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Physik 51(3−4), 165–180 (1928).
    [Crossref]
  26. L. I. Schiff, Quantum Mechanics (Mcgraw-Hill, 1981).
  27. S. Martinez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
    [Crossref]
  28. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref]
  29. Y. Ding, H. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [Crossref]
  30. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  31. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref]

2019 (1)

2018 (2)

H.-C. Chung and S.-Y. Tseng, “ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics,” Opt. Express 26(8), 9655–9665 (2018).
[Crossref]

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

2017 (2)

2016 (2)

2015 (7)

2014 (2)

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
[Crossref]

2013 (1)

2012 (2)

D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30(20), 3281–3287 (2012).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

2011 (2)

2009 (2)

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

2007 (1)

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

2001 (1)

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

1996 (1)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

1928 (1)

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Physik 51(3−4), 165–180 (1928).
[Crossref]

Born, M.

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Physik 51(3−4), 165–180 (1928).
[Crossref]

Bowers, J.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

Bowers, J. E.

Busch, Th.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Chen, Z.

Chrostowski, L.

Chung, H.-C.

Coolbaugh, D. D.

Dai, D.

D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30(20), 3281–3287 (2012).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref]

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Ding, Y.

El-Fiky, E.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Fock, V.

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Physik 51(3−4), 165–180 (1928).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Gillet, J.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Grattan, K. T. V.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

He, S.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

He, Y.

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Hosseini, E. S.

Hu, T.

Hung, Y.-J.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Jaeger, N. A. F.

Jiang, X.

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Jung, M.-Y.

Kalra, Y.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Kim, D. W.

Kim, K. H.

Kim, Y.

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Kumar, A.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Leake, G.

Lee, K. S.

Lee, M. H.

Li, H.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Li, R.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Li, Y.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Li, Z.-Y.

Liang, F.-C.

Liu, R.

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Longhi, S.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Lu, Z.

Ma, M.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Martinez-Garaot, S.

Martínez-Garaot, S.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Muga, J. G.

S. Martinez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref]

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Ou, H.

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

Peucheret, C.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Qiu, C.

Qiu, H.

Rahman, B. M. A.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

Rani, P.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Ruschhaupt, A.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Schiff, L. I.

L. I. Schiff, Quantum Mechanics (Mcgraw-Hill, 1981).

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, Y.

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Sinha, R. K.

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Somasiri, N.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

Su, Y.

Su, Z.

Sun, J.

Sun, X.

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tang, Y.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Themistos, C.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

Timurdogan, E.

Tremblay, C.

Tseng, S.-Y.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, X.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Wang, Y.

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Watts, M. R.

Wu, J.

Xiao, J.

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Xu, L.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Xu, Y.

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Yang, J.

Yang, W.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yen, T.-H.

Yin, M.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yu, P.

Yun, H.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Zhang, F.

Zhang, Y.

Appl. Phys. B: Lasers Opt. (1)

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B: Lasers Opt. 73(5−6), 613–618 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, and R. Li, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photonics Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. Bowers, “Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

J. Lightwave Technol. (4)

D. Dai, Z. Wang, and J. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30(20), 3281–3287 (2012).
[Crossref]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

J. Nanophotonics (1)

P. Rani, Y. Kalra, and R. K. Sinha, “Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform,” J. Nanophotonics 10(2), 026023 (2016).
[Crossref]

Laser Photonics Rev. (1)

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Commun. (1)

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Opt. Express (8)

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
[Crossref]

Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. chrostowski, “Wideband silicon photonics polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23(3), 3795–3808 (2015).
[Crossref]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref]

H.-C. Chung, K. S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
[Crossref]

H.-C. Chung and S.-Y. Tseng, “ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics,” Opt. Express 26(8), 9655–9665 (2018).
[Crossref]

S. Martinez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Z. Physik (1)

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Physik 51(3−4), 165–180 (1928).
[Crossref]

Other (3)

L. I. Schiff, Quantum Mechanics (Mcgraw-Hill, 1981).

FIMMWAVE / FIMMPROP, Photon Design Ltd, http://www.photond.com .

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic of the 3-dB coupler for the TM0 mode. (a) Cross-sectional view. (b) Top view.
Fig. 2.
Fig. 2. The relation between the effective indices and W(z) for the first four eigenmodes of the 3-dB coupler. The electric fields in the y direction for the 3rd and the 4th eigenmodes at W(z) = 0 µm and 0.1 µm are shown in the insets.
Fig. 3.
Fig. 3. The relation between 3-dB adiabatic coupler length L and transmission of (a) the 3rd eigenmode (b) the 4th eigenmode. The insets show the light distribution in the 3-dB adiabatic coupler with a coupler length L of 150 µm.
Fig. 4.
Fig. 4. (a) Device adiabaticity parameter C(z) for the TM supermodes of the 3-dB adiabatic coupler and the 3-dB FAQUAD coupler. (b) Variation of W with z for the 3-dB FAQUAD coupler. (c) Transmission of the 4th eigenmode as a function of device length L for the 3-dB adiabatic coupler and the 3-dB FAQUAD coupler. The inset shows the light distribution in the L = 36 µm 3-dB FAQUAD coupler.
Fig. 5.
Fig. 5. (a) Device adiabaticity parameter C(z) for the TE supermodes of the 3-dB FAQUAD coupler. (b) Light distributions in the 3-dB FAQUAD coupler for the TM0 mode input and (c) the TE0 mode input.
Fig. 6.
Fig. 6. Schematic of the system of cascaded point-symmetric devices.
Fig. 7.
Fig. 7. The relation between transmission and wavelength of (a) O1 and O2, (b) O3 and O4 of the 3-dB FAQUAD coupler using the TM0 mode input.
Fig. 8.
Fig. 8. The relation between transmission and Δw of (a) O1 and O2, (b) O3 and O4 of the 3-dB FAQUAD coupler using the TM0 mode input.
Fig. 9.
Fig. 9. (a) Schematic of FAQUAD PBS. The light distribution in the FAQUAD PBS using cascaded point-symmetric 3-dB FAQUAD couplers with (b) the TM0 mode input and (c) the TE0 mode input. The total length of the device is 89.4 µm.
Fig. 10.
Fig. 10. Transmission of the FAQUAD PBS as a function of wavelength for (a) the TM0 mode input and (b) the TE0 mode input.
Fig. 11.
Fig. 11. Transmission of the FAQUAD PBS as a function of Δw for (a) the TM0 mode input and (b) the TE0 mode input at 1.55 µm.
Fig. 12.
Fig. 12. Transmission of the FAQUAD PBS as a function of Δw for (a) the TM0 mode input and (b) the TE0 mode input at 1.7 µm.
Fig. 13.
Fig. 13. Transmission of the FAQUAD PBS as a function of Δw for (a) the TM0 mode input and (b) the TE0 mode input at 1.45 µm.
Fig. 14.
Fig. 14. Transmission of the FAQUAD PBS with a Δw = 10 nm width deviation as a function of wavelength for (a) the TM0 mode input and (b) the TE0 mode input.
Fig. 15.
Fig. 15. Transmission of the FAQUAD PBS with a Δw = −10 nm as a function of wavelength for (a) the TM0 mode input and (b) the TE0 mode input.
Fig. 16.
Fig. 16. Transmission of the FAQUAD PBS with different silicon thickness for (a) the TM0 mode input and (b) the TE0 mode input.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C ( z ) | m | n ˙ β m β n | ,
C ( z ) = | m | n ˙ β m β n | = W ˙ | m | W | n β m β n | = W ˙ F ( W ) = ε .
z ( W ) = L W f W i W i W c a d W ε ,
ε = W i W f c a d W W f W i ,
T = 2 π ϕ m n ,
ϕ m n = 1 L 0 L β m ( z ) β n ( z ) d z ,
F = ( Ω Δ Δ Ω ) ,
F p s = ( Ω Δ Δ Ω ) ,
O 3 = ( Ω Ω Δ Δ ) 2 = ( O 1 O 2 ) 2 O 4 = 1 ( O 1 O 2 ) 2 .
E R T E 0 = | 10 log 10 ( P T E 0 , t h r o u g h P T E 0 , cross ) |
E R T M 0 = | 10 log 10 ( P T M 0 , cross P T M 0 , through ) | ,

Metrics