Abstract

We report on a compact, high-power, high repetition-rate, ultrafast source of deep ultraviolet (DUV) radiation. Using a Yb-fibre laser at 1064 nm producing 260 fs output pulses at a 78 MHz repetition rate and usingtwo stage single-pass frequency-doubling, we have generated ultrafast DUV radiation at 266 nm. The fibre laser is first frequency-doubled into green at 532 nm using a LBO crystal with output power as high as 2.4 W and with a conversion efficiency of ∼ 50%. Further, the generated green is frequency-doubled in BBO crystal generating DUV radiation with an output power as high as 616 mW corresponding with near-IR to DUV conversion efficiency of ∼ 12.8%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm

S. Chaitanya Kumar, J. Canals Casals, Junxiong Wei, and M. Ebrahim-Zadeh
Opt. Express 23(21) 28091-28103 (2015)

Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal

N. Apurv Chaitanya, A. Aadhi, R. P. Singh, and G. K. Samanta
Opt. Lett. 39(18) 5419-5422 (2014)

Yb-fiber-laser-based, 1.8  W average power, picosecond ultraviolet source at 266  nm

S. Chaitanya Kumar, J. Canals Casals, E. Sanchez Bautista, K. Devi, and M. Ebrahim-Zadeh
Opt. Lett. 40(10) 2397-2400 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
    [Crossref]
  2. R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
    [Crossref]
  3. M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
    [Crossref]
  4. R. Liska, A. Ovsianikov, and et al., Multiphoton Lithography: Techniques, Materials, and Applications (John Wiley & Sons, 2016).
  5. J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
    [Crossref] [PubMed]
  6. G. Samanta, S. C. Kumar, A. Aadhi, and M. Ebrahim-Zadeh, “Yb-fiber-laser-pumped, high repetition-rate picosecond optical parametric oscillator tunable in the ultraviolet,” Opt. Express 22, 11476–11487 (2014).
    [Crossref] [PubMed]
  7. N. A. Chaitanya, A. Aadhi, R. P. Singh, and G. K. Samanta, “Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal,” Opt. Lett. 39, 5419–5422 (2014).
    [Crossref]
  8. H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39, 1600–1618 (2003).
    [Crossref]
  9. G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  10. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
    [Crossref]
  11. S. C. Kumar, J. C. Casals, E. S. Bautista, K. Devi, and M. Ebrahim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40, 2397–2400 (2015).
    [Crossref]
  12. N. A. Chaitanya, S. C. Kumar, K. Devi, G. Samanta, and M. Ebrahim-Zadeh, “Ultrafast optical vortex beam generation in the ultraviolet,” Opt. Lett. 41, 2715–2718 (2016).
    [Crossref]
  13. M. Müller, A. Klenke, T. Gottschall, R. Klas, C. Rothhardt, S. Demmler, J. Rothhardt, J. Limpert, and A. Tünnermann, “High-average-power femtosecond laser at 258 nm,” Opt. Lett. 42, 2826–2829 (2017).
    [Crossref]
  14. G. Samanta, S. C. Kumar, and M. Ebrahim-Zadeh, “Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm,” Opt. Lett. 34, 1561–1563 (2009).
    [Crossref] [PubMed]
  15. A. V. Smith, SNLO, http://www.as-photonics.com/snlo .
  16. D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.
  17. S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
    [Crossref]
  18. S. C. Kumar, J. C. Casals, J. Wei, and M. Ebrahim-Zadeh, “High-power, high repetition-rate performance characteristics of β BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm,” Opt. Express 23, 28091–28103 (2015).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (2)

2014 (2)

2009 (1)

2005 (1)

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

2003 (2)

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39, 1600–1618 (2003).
[Crossref]

M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
[Crossref]

2000 (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

1995 (1)

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

1991 (1)

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

1968 (1)

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Aadhi, A.

Ager, J. W.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

Bautista, E. S.

Blake, G. A.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
[Crossref]

Bowman, R.

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

Boyd, G.

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Breeden, K. L.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

Casals, J. C.

Chaitanya, N. A.

Demmler, S.

Devi, K.

Donovan, B.

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

Ebrahim-Zadeh, M.

Gerdy, J.

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

Gottschall, T.

Guillong, M.

M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
[Crossref]

Günther, D.

M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
[Crossref]

Horn, I.

M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
[Crossref]

Kamimura, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Klas, R.

Kleinman, D.

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Klenke, A.

Kumar, S. C.

Lee, H.-C.

D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.

Li, D.

D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.

Limpert, J.

Liska, R.

R. Liska, A. Ovsianikov, and et al., Multiphoton Lithography: Techniques, Materials, and Applications (John Wiley & Sons, 2016).

Meissner, H. E.

D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.

Meissner, S. K.

D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.

Mori, Y.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Müller, M.

Nalla, R. K.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

Ovsianikov, A.

R. Liska, A. Ovsianikov, and et al., Multiphoton Lithography: Techniques, Materials, and Applications (John Wiley & Sons, 2016).

Pullen, S.

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

Ritchie, R. O.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

Roberts, G.

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

Rothhardt, C.

Rothhardt, J.

Samanta, G.

Samanta, G. K.

Sasaki, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Sension, R. J.

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

Singh, R. P.

Sun, S.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
[Crossref]

Tünnermann, A.

Walker, L. A.

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

Wang, H.

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39, 1600–1618 (2003).
[Crossref]

Wei, J.

Weiner, A. M.

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39, 1600–1618 (2003).
[Crossref]

Wu, S.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
[Crossref]

Yap, Y. K.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Yoshimura, M.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Yu, H.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
[Crossref]

Zewail, A.

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

Chem. Phys. Lett. (1)

S. Pullen, L. A. Walker, B. Donovan, and R. J. Sension, “Femtosecond transient absorption study of the ring-opening reaction of 1,3-cyclohexadiene,” Chem. Phys. Lett. 242, 415–420 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39, 1600–1618 (2003).
[Crossref]

J. Anal. At. Spectrom. (1)

M. Guillong, I. Horn, and D. Günther, “A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS,” J. Anal. At. Spectrom. 18, 1224–1230 (2003).
[Crossref]

J. Appl. Phys. (1)

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Biomed. Opt. (1)

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10, 034012 (2005).
[Crossref] [PubMed]

J. Phys. Chem. (1)

R. Bowman, J. Gerdy, G. Roberts, and A. Zewail, “Femtosecond real-time probing of reactions. 6. A joint experimental and theoretical study of bismuth dimer dissociation,” J. Phys. Chem. 95, 4635–4647 (1991).
[Crossref]

Mater. Sci. Eng. R: Reports (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R: Reports 30, 1–54 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Other (4)

A. V. Smith, SNLO, http://www.as-photonics.com/snlo .

D. Li, H.-C. Lee, S. K. Meissner, and H. E. Meissner, “Spatial walk-off compensated beta-barium borate stack for efficient deep-UV generation,” (2018), pp. 10516.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside β-BBO crystal during UV nonlinear optical conversion,” in Nonlinear Materials, Devices, and Applications, vol. 3928 (International Society for Optics and Photonics, 2000), pp. 221–228.
[Crossref]

R. Liska, A. Ovsianikov, and et al., Multiphoton Lithography: Techniques, Materials, and Applications (John Wiley & Sons, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the experimental setup used for the generation of ultrafast DUV radiation. λ/2, half-wave plates at different wavelengths; PBS, polarizing beam splitter cube; L1–3, lenses; C1, LBO crystal in temperature oven; C2, BBO crystal; PM, power meter; S1–2, dichroic mirrors.
Fig. 2
Fig. 2 Power scaling characteristics of single-pass SHG of femtosecond fundamental laser in a non-critically phase matched 20 mm long LBO crystal. Insets, (a) Dependence of SH intensity on the crystal temperature (line is guide to eye). (b) Spatial intensity profile, and (c) (solid circles) spectrum of SH beam, (solid line) Gaussian fit to the measured spectral data point.
Fig. 3
Fig. 3 Dependence of DUV power to the pump beam focusing parameter. Solid and open circles represent experimental data for 2 mm and 5 mm long BBO crystals respectively. Lines (solid and dotted) are theoretical fit to the experimental results.
Fig. 4
Fig. 4 Variation of DUV power and single-pass conversion efficiency with the green pump power for 5 mm long BBO crystal. (Inset) Dependence of DUV power with the square of the green pump power. Lines are guide to eye.
Fig. 5
Fig. 5 Variation of DUV beam ellipticity and the angular phase-matching acceptance bandwidth with the green beam focusing parameter, ξ (The lines are guide to eye). Inset (a) (solid blue circles) Spectrum of the generated DUV radiation, (solid line) Gaussian fit to the measured spectrum, (b) (blue open circles) Dependence of DUV power with the pump incidence angle for a pump focusing parameter of ξ = 0.67, (Solid line) sinc2 fit to the experimental data.
Fig. 6
Fig. 6 Power stability of the fundamental laser, green beam and the DUV radiation over 2.5 hours. (Inset) Transverse intensity profile of the generated DUV > 1 m away from the source.

Metrics