Abstract

Metamaterial absorbers deliver potential applications in the field of civil and military products. Herein, we proposed a dual-band metamaterial absorber in a range of terahertz (THz) frequency based on numerical simulations. A novel design of swastika-shaped microslots in aluminum film is introduced that displays two high absorbance peaks at the resonant frequencies of 2.77 THz and 3.42 THz, respectively. The microslots enhance the efficiency of the device by accumulating most of the energy inside the symmetrical organized micro-gaps. Impressively, high absorbance in the range of 100–60% is recorded for a wide range of angle of incidence (0°–70°) of the electromagnetic wave. Furthermore, the calculated absorbance considerably remains insensitive (>80%) to any angle of polarization. To achieve relatively easy and cost-effective fabrication of metamaterial absorbers, the proposed absorber is simply designed with micrometer scale slots that are simply ingrained along only the vertical and horizontal directions in the aluminum film.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors

Nguyen Toan Trung, Dongju Lee, Hyuk-Kee Sung, and Sungjoon Lim
Appl. Opt. 55(29) 8301-8307 (2016)

Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1(1), 12–18 (2007).
    [Crossref]
  2. S. Hurtley and P. Szuromi, eds. “Metamaterials in review,” Science 305(5685), 749 (2004).
    [Crossref]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  4. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
    [Crossref]
  5. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  6. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
    [Crossref]
  7. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  8. Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
    [Crossref]
  9. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref]
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  11. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
    [Crossref]
  12. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
    [Crossref]
  13. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
    [Crossref]
  14. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  15. S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
    [Crossref]
  16. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  17. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242 (2018).
    [Crossref]
  18. D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
    [Crossref]
  19. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154 (2012).
    [Crossref]
  20. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
    [Crossref]
  21. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945 (2011).
    [Crossref]
  22. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679 (2015).
    [Crossref]
  23. F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
    [Crossref]
  24. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518 (2016).
    [Crossref]
  25. R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280 (2017).
    [Crossref]
  26. B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, “Frequency tunable metamaterial absorber at deep-subwavelength scale,” Opt. Mater. Express 5(2), 227 (2015).
    [Crossref]
  27. F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
    [Crossref]
  28. G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
    [Crossref]
  29. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref]
  30. K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
    [Crossref]
  31. M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
    [Crossref]
  32. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873 (2017).
    [Crossref]
  33. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
    [Crossref]
  34. Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
    [Crossref]
  35. W. Zhang, W. M. Zhu, E. E. M. Chia, Z. X. Shen, H. Cai, Y. D. Gu, W. Ser, and A. Q. Liu, “A pseudo-planar metasurface for a polarization rotator,” Opt. Express 22(9), 10446 (2014).
    [Crossref]
  36. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856 (2007).
    [Crossref]
  37. L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
    [Crossref]
  38. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271 (1998).
    [Crossref]
  39. J. R. DeVore, “Refractive Indices of Rutile and Sphalerite,” J. Opt. Soc. Am. 41(6), 416 (1951).
    [Crossref]
  40. K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
    [Crossref]
  41. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2011).
  42. S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Opt. Mater. 84, 447–452 (2018).
    [Crossref]
  43. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref]

2018 (5)

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242 (2018).
[Crossref]

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Opt. Mater. 84, 447–452 (2018).
[Crossref]

2017 (6)

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873 (2017).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280 (2017).
[Crossref]

Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

2016 (3)

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518 (2016).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

2015 (6)

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang, and L.-L. Wang, “Frequency tunable metamaterial absorber at deep-subwavelength scale,” Opt. Mater. Express 5(2), 227 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679 (2015).
[Crossref]

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

2014 (2)

W. Zhang, W. M. Zhu, E. E. M. Chia, Z. X. Shen, H. Cai, Y. D. Gu, W. Ser, and A. Q. Liu, “A pseudo-planar metasurface for a polarization rotator,” Opt. Express 22(9), 10446 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

2013 (2)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

2012 (4)

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154 (2012).
[Crossref]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2011 (4)

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945 (2011).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

2010 (1)

2008 (2)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

2007 (3)

E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1(1), 12–18 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856 (2007).
[Crossref]

2006 (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

2004 (1)

S. Hurtley and P. Szuromi, eds. “Metamaterials in review,” Science 305(5685), 749 (2004).
[Crossref]

1998 (1)

1951 (1)

Akgöl, O.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Alkurt, F. Ö.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Altintas, O.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Alves, F.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

Averitt, R. D.

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242 (2018).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Azad, A. K.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Bagmanci, M.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Bakir, M.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Bawuah, P.

S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Opt. Mater. 84, 447–452 (2018).
[Crossref]

Beccherelli, R.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Cai, H.

Cao, T.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Chen, H.-T.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154 (2012).
[Crossref]

Chen, Q.

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref]

Cheng, Y.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

Cheng, Z.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

Cheng, Z. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

Chia, E. E. M.

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154 (2012).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Cole, M.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cryan, M. J.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Cumming, D. R. S.

Daniel, S.

S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Opt. Mater. 84, 447–452 (2018).
[Crossref]

Decker, M.

DeVore, J. R.

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Djurišic, A. B.

Duan, G.

Elazar, J. M.

Fan, K.

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Fan, S.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Faraone, L.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Gajic, R.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Ge, S.

Giang, T. T.

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grant, J.

Grbovic, D.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

Gu, Y. D.

Gui, T.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

Hai, P.

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

He, X.-J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hoshina, T.

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

Hu, W.

Huang, L.

Huang, W.-Q.

Hwang, J. S.

Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
[Crossref]

Isic, G.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Ji, J.

Jin, Y.

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Kala, H.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Kanehara, K.

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

Karaaslan, M.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Karadag, F.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Karunasiri, G.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

Kearney, B.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

Khalid, A.

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

Klein, M. W.

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Lam, V. D.

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

Lavrik, N. V.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

Lee, Y. P.

Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
[Crossref]

Li, L.

Linden, S.

Ling, F.

Liu, A. Q.

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Liu, J.

Liu, M.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Liu, X.

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

Lu, Y.

Luo, C.

Luo, S.-N.

Luu, D. H.

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945 (2011).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Majewski, M. L.

Martyniuk, M.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Monks, J. N.

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

Nakajima, M.

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Nie, Y.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

O’Hara, J. F.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Padilla, W. J.

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Powell, D. A.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2011).

Putrino, G.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Rakic, A. D.

Ramani, S.

Reiten, M. T.

Saha, S. C.

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schalch, J.

Ser, W.

Shadrivov, I. V.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shamonina, E.

E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1(1), 12–18 (2007).
[Crossref]

Shen, Z. X.

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Silva, D.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Simpson, R. E.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Solymar, L.

E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1(1), 12–18 (2007).
[Crossref]

Soukoulis, C. M.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Su, Z.

Sun, W.

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280 (2017).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Susli, M.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Takeda, H.

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

Tan, S.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154 (2012).
[Crossref]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Tian, F.

Tian, H.

Tsurumi, T.

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

Ünal, E.

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Van Dung, N.

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Vasic, B.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Wallace, V. P.

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Wang, B.-X.

Wang, G.-Z.

Wang, J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Wang, L.

Wang, L.-L.

Wang, R.

Wang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Wang, X.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

Wang, Y.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Wang, Z.

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Wegener, M.

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Wu, N.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

Wu, Q.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Xu, N.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, B.

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

Yan, F.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, J. Zhang, and W. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yang, H.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Yao, G.

Yao, J.

Ye, Y. Q.

Yin, J.

Yoo, Y. J.

Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
[Crossref]

Yue, J.

Yue, L.

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

Zhai, X.

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Zhang, G.-F.

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

Zhang, J.

Zhang, L.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Zhang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

W. Zhang, W. M. Zhu, E. E. M. Chia, Z. X. Shen, H. Cai, Y. D. Gu, W. Ser, and A. Q. Liu, “A pseudo-planar metasurface for a polarization rotator,” Opt. Express 22(9), 10446 (2014).
[Crossref]

Zhang, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242 (2018).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zhao, R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zhao, X.

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Zheng, J.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Zhou, J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, W. M.

Zografopoulos, D. C.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Adv. Mater. (1)

K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref]

AIP Adv. (1)

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

AIP Conf. Proc. (1)

F. Ö. Alkurt, M. Bağmancı, M. Karaaslan, M. Bakır, O. Altıntaş, F. Karadağ, O. Akgöl, and E. Ünal, “Design of a dual band metamaterial absorber for Wi-Fi bands,” AIP Conf. Proc. 1935, 060001 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

L. Yue, J. N. Monks, B. Yan, and Z. Wang, “Large-area formation of microsphere arrays using laser surface texturing technology,” Appl. Phys. A 123(5), 318 (2017).
[Crossref]

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102(1), 99–103 (2011).
[Crossref]

Appl. Phys. Lett. (3)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO 2 /Al based metamaterial structures,” Appl. Phys. Lett. 100(11), 111104 (2012).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

J. Ceram. Soc. Jpn. (1)

K. Kanehara, T. Hoshina, H. Takeda, and T. Tsurumi, “Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry,” J. Ceram. Soc. Jpn. 123(1437), 303–306 (2015).
[Crossref]

J. Electromagn. Waves Appl. (2)

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure,” J. Electromagn. Waves Appl. 27(8), 1068–1076 (2013).
[Crossref]

Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” J. Electromagn. Waves Appl. 31(7), 663–715 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Sci. Adv. Mater. Devices (1)

D. H. Luu, N. Van Dung, P. Hai, T. T. Giang, and V. D. Lam, “Switchable and tunable metamaterial absorber in THz frequencies,” J. Sci. Adv. Mater. Devices 1(1), 65–68 (2016).
[Crossref]

Metamaterials (1)

E. Shamonina and L. Solymar, “Metamaterials: How the subject started,” Metamaterials 1(1), 12–18 (2007).
[Crossref]

Microsyst. Nanoeng. (1)

M. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V. P. Wallace, W. J. Padilla, D. A. Powell, I. V. Shadrivov, and M. Martyniuk, “Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial,” Microsyst. Nanoeng. 3, 17033 (2017).
[Crossref]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. (1)

S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Opt. Mater. 84, 447–452 (2018).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Phys. Rev. B (3)

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Phys. Rev. Lett. (1)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial Absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref]

Prog. Electromagn. Res. (1)

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Prog. Electromagn. Res. 115, 381–397 (2011).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Sci. Rep. (3)

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref]

Science (1)

S. Hurtley and P. Szuromi, eds. “Metamaterials in review,” Science 305(5685), 749 (2004).
[Crossref]

Other (1)

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the unit cell of proposed metamaterial absorber. The optimized parameters of swastika-shaped microslots are; a = 4 µm, b = 9 µm, c = 21 µm and d = 0.5 µm. The thickness of the device is 3 µm with L = W = 22 µm.
Fig. 2.
Fig. 2. Calculated reflectance of the incident electromagnetic wave in a frequency range of 1.5 THz – 4.5 THz. The angle θ represents the angle of incidence. The red solid line depicts the transmission.
Fig. 3.
Fig. 3. Distribution of the electric field intensity inside the microslots at resonant frequencies of (a) 2.77 THz and (b) 3.42 THz. In (c) and (d), current density is plotted for the same frequencies. The incident electromagnetic wave is polarized along the y-axis.
Fig. 4.
Fig. 4. Calculated absorbance as a function of a wide range of angle of incidence θ = 0° – 70°. In (a), the incident electric field is oriented along the x-axis while in (b) it is polarized along the y-axis. The insets of the figure, TM and TE modes of the incident wave are defined where E, B and k represent electric field, magnetic field and wavevector, respectively. The angle θ lies between k and normal to the surface.
Fig. 5.
Fig. 5. Absorbance as a function of angle of polarization φ at resonant frequencies of 2.77 THz and 3.42 THz. The inset of the figure demonstrates the definition of φ.

Metrics