Abstract

An off-axis transmissive all-dielectric square metasurface with a side length of 55 mm is designed and studied in this paper. It can shape the 2.52 terahertz Gaussian beam into a rigorous plane wave (we define the required field-quality of the rigorous plane wave region: peak-to-peak amplitude ripple less than 1 dB and phase ripple less than 10°). The metasurface is composed of silicon cylindrical resonators whose phase modulation can almost span over the entire 2π range and the poly (4-methyl-1-pentene) substrate. The diameters of the resonators are from 11 to 35 μm and the heights of them are all 60 μm. The working range of the obtained plane wave is calculated by the physical optics integral formula when the off-axis angle is 22°. The results show that when the off-axis propagation distance is 1050 mm, the area satisfying the plane wave condition is 17×20 mm2, and the diffraction efficiency (we define the diffraction efficiency: the ratio of the total light field energy on the target plane to the total energy of light field that is just after the metasurface along the propagation of incident light) of the rigorous plane wave region cross-section is 23.4%. In addition, a random silicon cylinder diameter fabrication error within ± 4.5 μm is taken into account for the actual fabrication condition. The error satisfies the normal distribution with a mean of 0 μm and a standard deviation of 3 μm. The influence of the fabrication error on the shaping result is studied. We anticipate that the whole study will have certain pragmatic applications in some fields, such as enlarging the capture area of terahertz optical tweezers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

16 January 2019: A typographical correction was made to Fig. 2.

12 June 2019: A typographical correction was made to the caption of Fig. 3.


OSA Recommended Articles
Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime

Huifang Zhang, Xueqian Zhang, Quan Xu, Qiu Wang, Yuehong Xu, Minggui Wei, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xixiang Zhang, Cong Hu, Jiaguang Han, and Weili Zhang
Photon. Res. 6(1) 24-29 (2018)

Autofocusing Airy beams generated by all-dielectric metasurface for visible light

Qingbin Fan, Daopeng Wang, Pengcheng Huo, Zijie Zhang, Yuzhang Liang, and Ting Xu
Opt. Express 25(8) 9285-9294 (2017)

Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens

Hao Chen, Zhixiang Wu, Zeyu Li, Zhenfei Luo, Xue Jiang, Zhongquan Wen, Liguo Zhu, Xun Zhou, Hua Li, Zhengguo Shang, Zhihai Zhang, Kun Zhang, Gaofeng Liang, Senlin Jiang, Lianghui Du, and Gang Chen
Opt. Express 26(23) 29817-29825 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref]
  2. L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref]
  3. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  4. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref]
  5. Y. Zhou, R. Chen, and Y. Ma, “Design of optical wavelength demultiplexer based on off-axis meta-lens,” Opt. Lett. 42(22), 4716–4719 (2017).
    [Crossref]
  6. D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
    [Crossref]
  7. Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  8. C. C. Chang, D. Headland, D. Abbott, W. Withayachumnankul, and H. T. Chen, “Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces,” Opt. Lett. 42(9), 1867 (2017).
    [Crossref]
  9. Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
    [Crossref]
  10. D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref]
  11. L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
    [Crossref]
  12. D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
    [Crossref]
  13. X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref]
  14. T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
    [Crossref]
  15. D. L. Jia, Y. Tian, W. Ma, X. F. Gong, J. Y. Yu, G. Z. Zhao, and X. M. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
    [Crossref]
  16. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  17. S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  18. Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
    [Crossref]
  19. D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
    [Crossref]
  20. J. Y. Tian, Y. Q. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
    [Crossref]
  21. B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593 (2015).
    [Crossref]
  22. J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
    [Crossref]
  23. Q. B. Fan, D. P. Wang, P. C. Huo, Z. J. Zhang, Y. Z. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25(8), 9285–9294 (2017).
    [Crossref]
  24. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
    [Crossref]
  25. Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
    [Crossref]
  26. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).
  27. C. L. Zhao, Y. J. Cai, X. H. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17(3), 1753–1765 (2009).
    [Crossref]
  28. T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
    [Crossref]
  29. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
    [Crossref]
  30. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
    [Crossref]
  31. S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
    [Crossref]
  32. Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
    [Crossref]
  33. The simulation software is EastWave made by Dongjun Information and Technology Co. Ltd.
  34. S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
    [Crossref]
  35. H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
    [Crossref]

2018 (3)

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
[Crossref]

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

2017 (7)

2016 (6)

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

2015 (6)

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

2014 (4)

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref]

2013 (2)

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

2012 (1)

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

2010 (1)

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

2009 (1)

1999 (1)

1997 (1)

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

Abbott, D.

Ala-Laurinaho, J. P. S.

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

Albella, P.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

Astilean, S.

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Beausoleil, R. G.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Bhaskaran, M.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref]

Boltasseva, A.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Cai, B. G.

Cai, Y. J.

Cambril, E.

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Carrasco, E.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Chang, C. C.

Chavel, P.

Chen, H. T.

Chen, R.

Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
[Crossref]

Y. Zhou, R. Chen, and Y. Ma, “Design of optical wavelength demultiplexer based on off-axis meta-lens,” Opt. Lett. 42(22), 4716–4719 (2017).
[Crossref]

Chen, W. T.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Cheng, Q.

Cong, L. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

Cui, T. J.

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Ding, S. H.

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Emani, N. K.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Eyyuboglu, H. T.

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, Q. B.

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

Fattal, D.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Feng, S. F.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Fiorentino, M.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Fumeaux, C.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref]

Gao, H.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Gao, P.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Gong, X. F.

Gong, Y. D.

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Gu, J. Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Gu, Y. H.

Guo, J. P.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Gutruf, P.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref]

Han, J. G.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Hanham, S. M.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Headland, D.

C. C. Chang, D. Headland, D. Abbott, W. Withayachumnankul, and H. T. Chen, “Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces,” Opt. Lett. 42(9), 1867 (2017).
[Crossref]

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Hirvonen, T.

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

Hong, M. H.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

Hopkins, B.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

Hu, C.

Hu, D.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Huo, P. C.

Jang, H.

Jia, D. L.

Jian, L. K.

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

Jiang, W. X.

Jin, J. J.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Kan, Q.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Kenney, M.

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Kildishev, A. V.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Kivshar, Y. S.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Klar, P. J.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Kravchenko, I.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kruk, S.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Lalanne, P.

Launois, H.

Laurell, F.

Li, J. F.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Li, Q.

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

Li, X.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Li, Y. B.

Li, Y. F.

Liang, Y. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Liang, Y. Z.

Liu, H. Z.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Liu, L. X.

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Lu, H. T.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Lu, X. H.

Luo, J.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Luo, X. G.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Ma, W.

Ma, Y.

Ma, Y. G.

Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
[Crossref]

Ma, Z. J.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Maier, S. A.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Meng, H. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Miroshnichenko, A.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Neshev, D. N.

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Ng, B. H.

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Ni, X. J.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Nirantar, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Niu, T. M.

Oh, J.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Ouyang, C. M.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Pasiskevicius, V.

Peng, Z.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Perruisseau-Carrier, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Pu, M. B.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Qiu, C. W.

Qiu, M.

Raisanen, A. V.

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Schwarz, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Shalaev, V. M.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Shi, Y. L.

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Singh, R.

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

Sorin, W. V.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Sriram, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

T. M. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Su, X. Q.

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Sun, W. F.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Tian, J. Y.

Tian, Y.

Tian, Z.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Tran, T.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Tuovinen, J.

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

Upadhyay, A.

Vo, S.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

Wang, D. C.

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref]

Wang, D. P.

Wang, F. Q.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Wang, Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

Wang, X. K.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Wei, M. G.

Wei, Z. C.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Withayachumnankul, W.

Xu, N. N.

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Xu, Q.

Xu, T.

Xu, Y. H.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Yang, Q. L.

Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Yang, Y. Q.

Yao, R.

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).

Ye, J. S.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Yu, J. Y.

Yu, X. M.

Yue, W. S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, H. F.

Zhang, L. C.

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

Zhang, S.

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, W. L.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, X. H.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Zhang, X. Q.

H. F. Zhang, X. Q. Zhang, Q. Xu, Q. Wang, Y. H. Xu, M. G. Wei, Y. F. Li, J. Q. Gu, Z. Tian, C. M. Ouyang, X. X. Zhang, C. Hu, J. G. Han, and W. L. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24 (2018).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, X. X.

Zhang, Y.

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Zhang, Z. J.

Zhao, C. L.

Zhao, G. Z.

Zhao, Z. Y.

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Zhou, Y.

Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
[Crossref]

Y. Zhou, R. Chen, and Y. Ma, “Design of optical wavelength demultiplexer based on off-axis meta-lens,” Opt. Lett. 42(22), 4716–4719 (2017).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

ACS Photonics (2)

Z. J. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3(6), 1019–1026 (2016).
[Crossref]

Adv. Mater. (2)

X. Q. Zhang, Z. Tian, W. S. Yue, J. Q. Gu, S. Zhang, J. G. Han, and W. L. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, and W. L. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Adv. Opt. Mater. (4)

D. Hu, X. K. Wang, S. F. Feng, J. S. Ye, W. F. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Q. Wang, X. Q. Zhang, Y. H. Xu, and Z. Tian, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Q. L. Yang, J. Q. Gu, Y. H. Xu, and X. Q. Zhang, “Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control,” Adv. Opt. Mater. 5(10), 1601084 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband highly-efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Phys. B (1)

S. H. Ding, Q. Li, R. Yao, and Q. Wang, “Brewster’s angle method for absorption coefficient measurement of high-resistivity silicon based on CW THz laser,” Appl. Phys. B 98(1), 119–124 (2010).
[Crossref]

Appl. Sci. (1)

Y. Zhou, R. Chen, and Y. G. Ma, “Characteristic analysis of compact spectrometer based on off-axis meta-lens,” Appl. Sci. 8(3), 321 (2018).
[Crossref]

IEEE Photon. J. (1)

D. C. Wang, L. C. Zhang, Y. D. Gong, and L. K. Jian, “Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces,” IEEE Photon. J. 8(1), 1–8 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, M. Fiorentino, and R. G. Beausoleil, “Sub-wavelength grating lenses with a twist,” IEEE Photon. Technol. Lett. 26(13), 1375–1378 (2014).
[Crossref]

IEEE Trans. Antennas Propag. (1)

T. Hirvonen, J. P. S. Ala-Laurinaho, J. Tuovinen, and A. V. Raisanen, “A compact antenna test range based on a hologram,” IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

L. Q. Cong, N. N. Xu, J. Q. Gu, and R. Singh, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

Nano Lett. (1)

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref]

Nanomaterials (1)

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(5), 7069 (2015).
[Crossref]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. Lett. (1)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Sci. Rep. (1)

J. J. Jin, J. Luo, X. H. Zhang, H. Gao, X. Li, M. B. Pu, P. Gao, Z. Y. Zhao, and X. G. Luo, “Generation and detection of orbital angular momentum via metasurface,” Sci. Rep. 6(1), 24286 (2016).
[Crossref]

Science (1)

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Other (2)

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).

The simulation software is EastWave made by Dongjun Information and Technology Co. Ltd.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic diagram of beam propagation process.
Fig. 2.
Fig. 2. Schematic diagram of the unit-cell structure and its transmission coefficients as well as the field plots. (a). The building block consists of silicon cylinder sitting at the center on the TPX substrate. (b). Simulated transmission coefficients for unit-cell structures with different silicon cylinder diameters. (c). Field plots of the unit-cell structure when D is 27.5 μm.
Fig. 3.
Fig. 3. Simulated results and the metasurface designed under the ideal condition. (a). Continuous phase modulation value distribution. (b). Discrete phase modulation value distribution (17 discrete levels). (c). Diameter distribution of silicon cylinders on metasurface. (d). The diagram of part of the metasurface.
Fig. 4.
Fig. 4. Fields under the ideal condition when d∈[50, 1800] mm. (a)–(b). Amplitude and phase in the u direction (v = 0 mm). (c)–(d). Amplitude and phase in the v direction (u = 0 mm).
Fig. 5.
Fig. 5. The maximal peak-to-peak field ripples of the cutting lines within the detector range under the ideal condition when d∈[50, 1800] mm. (a)–(b). The maximal peak-to-peak amplitude and phase ripples in the u direction (v = 0 mm, u∈[−6.2, 6.2] mm). (c)–(d). The maximal peak-to-peak amplitude and phase ripples in the v direction (u = 0 mm, v∈[−6.2, 6.2] mm).
Fig. 6.
Fig. 6. Cutting lines of the field on the detector plane under the ideal condition when d is 1050 mm. (a)–(b). Amplitude and phase in the u direction (v = 0 mm). (c)–(d). Amplitude and phase in the v direction (u = 0 mm). (e)–(f). Amplitude and phase in the u direction (v = 0 mm) without the metasurface. (g)–(h). Amplitude and phase in the v direction (u = 0 mm) without the metasurface.
Fig. 7.
Fig. 7. The two-dimensional field distribution on the detector plane under the ideal condition when d is 1050 mm. (a). Amplitude. (b). Phase. (c). Amplitude without the metasurface. (d). Phase without the metasurface.
Fig. 8.
Fig. 8. The amplitude of the horizontal line (v = 0 mm) on the detector plane with different distance. (a). d = 850 mm. (b). d = 1250 mm.
Fig. 9.
Fig. 9. Simulated results under the error condition as well as the differences between the error condition and the ideal condition. (a). Probability distribution of the fabrication error. (b). Diameter distribution of silicon cylinders on metasurface. (c). Discrete phase modulation value distribution. (d). The diameter difference. (e). The actual phase modulation value difference.
Fig. 10.
Fig. 10. Fields under the error condition when d∈[50, 1800] mm as well as the differences between them and the corresponding fields under the ideal condition. (a)–(b). Amplitude and phase in the u direction (v = 0 mm). (c)–(d). Amplitude and phase in the v direction (u = 0 mm). (e)–(h). Differences between fields under the error condition and the corresponding fields under the ideal condition.
Fig. 11.
Fig. 11. The maximal peak-to-peak field ripples of the cutting lines within the detector range under the error condition when d∈[50, 1800] mm. (a)–(b). The maximal peak-to-peak amplitude and phase ripples in the u direction (v = 0 mm, u∈[−6.2, 6.2] mm). (c)–(d). The maximal peak-to-peak amplitude and phase ripples in the v direction (u = 0 mm, v∈[−6.2, 6.2] mm).
Fig. 12.
Fig. 12. Cutting lines of the field on the detector plane under the error condition when d is 1050 mm. (a)–(b). Amplitude and phase in the u direction (v = 0 mm). (c)–(d). Amplitude and phase in the v direction (u = 0 mm).
Fig. 13.
Fig. 13. The two-dimensional field distribution on the detector plane under the error condition when d is 1050 mm as well as the differences between them and corresponding fields under the ideal condition. (a). Amplitude distribution. (b). Phase distribution. (c). Amplitude difference. (d). Phase difference.

Tables (2)

Tables Icon

Table 1. Region range under different conditions and the energy ratio in the ideal case

Tables Icon

Table 2. Region range under different conditions and the energy ratio in the error case

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = ω 0 ω z exp ( x 2 + y 2 ω z 2 ) exp ( i ( k ( x 2 + y 2 2 r z + z ) arctan ( z / f ) ) ) ,
Ψ ( x , y , z ) = ( ψ ( x , y , z ) + 2 π sin α λ x ) ,
E a ( x , y , z b ) = E ( x , y , z ) T ( D c ) exp ( i Ψ ( D c ) ) ,
{ x = u cos α + w sin α + d sin α y = v z = u sin α + w cos α + z b + d cos α ,
{ E ( u , v , 0 ) = E a ( x , y , z b ) 1 + i k R 2 π R 3 e i k R × [ g y ( u sin α + d cos α ) g z ( v y ) ] d x d y R = ( u cos α + d sin α x ) 2 + ( v y ) 2 + ( u sin α + d cos α ) 2 ,

Metrics