Abstract

Cw laser oscillation of ruby at 694 nm in linear and ring resonators is reported for the first time, pumped with a 1 W laser diode at 405 nm as well as 445 nm. The ruby laser operates at room temperature with a threshold of 200 mW at 405 nm and 400 mW at 445 nm. So far output powers up to 36 mW have been achieved pumped at 405 nm. With the ruby ring laser highly coherent single frequency operation will be possible.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature Dependence of a Diode-Pumped Cryogenic Er:YAG Laser

Nikolay Ter-Gabrielyan, Mark Dubinskii, G. Alex Newburgh, Arockiasamy Michael, and Larry D. Merkle
Opt. Express 17(9) 7159-7169 (2009)

Improved high-field laser characteristics of a diode-pumped Yb:LiYF4 crystal at low temperature

Junji Kawanaka, Koichi Yamakawa, Hajime Nishioka, and Ken-ichi Ueda
Opt. Express 10(10) 455-460 (2002)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
    [Crossref]
  2. T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett. 4, 564 (1960).
    [Crossref]
  3. D. F. Nelson and W. S. Boyle, “A continuously operating ruby optical maser,” Appl. Opt. 1, 99 (1962).
    [Crossref]
  4. D. Roess, “Analysis of room temperature cw ruby lasers,” IEEE J. Quantum Electron. 2, 105 (1966).
    [Crossref]
  5. M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
    [Crossref]
  6. T. N. Venkatesan and S. L. McCall, “cw ruby laser pumped by a 5145A˚ argon laser,” Rev. Sci. Instrum. 48, 539 (1977).
    [Crossref]
  7. R. S. Afzal, W. P. Lin, and N. M. Lawandy, “Experimental study of the dynamics of a ruby laser pumped by a cw argon-ion laser,” J. Opt. Soc. Am. B 6, 2348 (1989).
    [Crossref]
  8. D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1963).
    [Crossref]
  9. D. C. Cronemeyer, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703 (1966).
    [Crossref]
  10. W. F. Krupke, “GaN pumped ruby laser,” US patent20180041002 (February8, 2018).
  11. L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

1989 (1)

1977 (1)

T. N. Venkatesan and S. L. McCall, “cw ruby laser pumped by a 5145A˚ argon laser,” Rev. Sci. Instrum. 48, 539 (1977).
[Crossref]

1970 (2)

M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
[Crossref]

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

1966 (2)

D. C. Cronemeyer, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703 (1966).
[Crossref]

D. Roess, “Analysis of room temperature cw ruby lasers,” IEEE J. Quantum Electron. 2, 105 (1966).
[Crossref]

1963 (1)

D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1963).
[Crossref]

1962 (1)

1960 (2)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
[Crossref]

T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett. 4, 564 (1960).
[Crossref]

Afzal, R. S.

Birnbaum, M.

M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
[Crossref]

Boyle, W. S.

Cronemeyer, D. C.

Fincher, C. L.

M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
[Crossref]

Kornienko, L. S.

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

Kravtsov, N. V.

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

Krupke, W. F.

W. F. Krupke, “GaN pumped ruby laser,” US patent20180041002 (February8, 2018).

Lawandy, N. M.

Lin, W. P.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
[Crossref]

T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett. 4, 564 (1960).
[Crossref]

McCall, S. L.

T. N. Venkatesan and S. L. McCall, “cw ruby laser pumped by a 5145A˚ argon laser,” Rev. Sci. Instrum. 48, 539 (1977).
[Crossref]

McCumber, D. E.

D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1963).
[Crossref]

Naumkin, N. I.

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

Nelson, D. F.

Prokhorov, A.M.

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

Roess, D.

D. Roess, “Analysis of room temperature cw ruby lasers,” IEEE J. Quantum Electron. 2, 105 (1966).
[Crossref]

Sturge, M. D.

D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1963).
[Crossref]

Venkatesan, T. N.

T. N. Venkatesan and S. L. McCall, “cw ruby laser pumped by a 5145A˚ argon laser,” Rev. Sci. Instrum. 48, 539 (1977).
[Crossref]

Wendzikowski, P. H.

M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Birnbaum, P. H. Wendzikowski, and C. L. Fincher, “Continuous-wave nonspiking single-mode ruby lasers,” Appl. Phys. Lett. 16, 436 (1970).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Roess, “Analysis of room temperature cw ruby lasers,” IEEE J. Quantum Electron. 2, 105 (1966).
[Crossref]

J. Appl. Phys. (1)

D. E. McCumber and M. D. Sturge, “Linewidth and temperature shift of the R lines in ruby,” J. Appl. Phys. 34, 1682 (1963).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
[Crossref]

Phys. Rev. Lett. (1)

T. H. Maiman, “Optical and microwave-optical experiments in ruby,” Phys. Rev. Lett. 4, 564 (1960).
[Crossref]

Rev. Sci. Instrum. (1)

T. N. Venkatesan and S. L. McCall, “cw ruby laser pumped by a 5145A˚ argon laser,” Rev. Sci. Instrum. 48, 539 (1977).
[Crossref]

Soviet Physics JETP (1)

L. S. Kornienko, N. V. Kravtsov, N. I. Naumkin, and A.M. Prokhorov, “Single mode ruby ring laser,” Soviet Physics JETP 31, 290 (1970).

Other (1)

W. F. Krupke, “GaN pumped ruby laser,” US patent20180041002 (February8, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ruby energy level diagram (after Ref. [2]). Indicated are the three relevant levels
Fig. 2
Fig. 2 Experimental setup of the semi-concentric resonator
Fig. 3
Fig. 3 Spectrum of the pump and ruby laser. Pump power 1W
Fig. 4
Fig. 4 Transient response of the ruby laser. Oscilloscope trace, similar to the observation of [5]
Fig. 5
Fig. 5 Fluorescence tracks within the ruby crystal (L = 8.6 mm). (B) at optimum position, (C) at shorter and (A) at larger distance to focusing lens (f = 50 mm).
Fig. 6
Fig. 6 Ruby laser output power versus pump power for the semi-concentric resonator with an output coupling mirror M2 of 1.8%
Fig. 7
Fig. 7 Ruby crystal transmission versus pump power. (a), (b), (c) correspond to calculated and measured threshold pump powers, used for calculations summarized in Table 1 and discussed below.
Fig. 8
Fig. 8 Setup of the ruby ring laser with birefringent tuner (BFT). Resonator length about 450 mm.
Fig. 9
Fig. 9 Transient response of the ruby ring laser.

Tables (1)

Tables Icon

Table 1 Data of measurements and calculations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T 0 = e N 0 σ p L
N 1 = N o 1 + I / I 0
G = σ L L Δ N ; Δ N = N 2 g 2 g 1 N 1

Metrics