Abstract

A flying-bird mode-division demultiplexer (FBMDD) that can demultiplex three modes is proposed. The demultiplexer is simply a modified rib waveguide, called a j-rib, followed by three fan-out waveguides. The fan-out waveguides are three single-mode strip waveguides, attached to the center, right, and left regions of the j-rib waveguide. The input of the j-rib waveguide is excited by three modes, e.g., ${\rm{EH}}_{{11}}$, ${\rm{EH}}_{{12}}$, and ${\rm{EH}}_{{13}}$. The waveguide is designed so as to separate the modes and guide them to the center, right, and left regions, respectively. The separated modes are then fanned-out to the output ports. A theoretical analysis of the proposed demultiplexer is developed based on extensions of the large single-mode rib conditions. In addition, both MODE and 3D-FDTD simulations of the demultiplexer are performed to validate the proposed concept. Our results reveal that the device has low insertion losses and crosstalks over a very wide bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip reconfigurable and scalable optical mode multiplexer/demultiplexer based on three-waveguide-coupling structure

Huifu Xiao, Zilong Liu, Xu Han, Jianhong Yang, Guanghui Ren, Arnan Mitchell, and Yonghui Tian
Opt. Express 26(17) 22366-22377 (2018)

Bidirectional mode-division multiplexers with antireflection gratings

Hossam M. H. Shalaby
Appl. Opt. 57(3) 476-484 (2018)

Modeling, simulation, and fabrication of bi-directional mode-division multiplexing for silicon-on-insulator platform

Omnia M. Nawwar, Hossam M. H. Shalaby, and Ramesh K. Pokharel
Appl. Opt. 57(1) 42-51 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).
  2. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
    [Crossref]
  3. P. J. Winzer, “Modulation and multiplexing in optical communications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, (Optical Society of America, 2009), p. CTuL3.
  4. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [Crossref]
  5. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
    [Crossref]
  6. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
    [Crossref]
  7. W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction,” Opt. Express 26(7), 8162–8170 (2018).
    [Crossref]
  8. O. M. Nawwar, H. M. Shalaby, and R. K. Pokharel, “Modeling, simulation, and fabrication of bi-directional mode-division multiplexing for silicon-on-insulator platform,” Appl. Opt. 57(1), 42–51 (2018).
    [Crossref]
  9. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref]
  10. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref]
  11. C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
    [Crossref]
  12. C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.
  13. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref]
  14. W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
    [Crossref]
  15. H. M. H. Shalaby, “Bi-directional coupler as a mode-division multiplexer/demultiplexer,” J. Lightwave Technol. 34(15), 3633–3640 (2016).
    [Crossref]
  16. H. M. H. Shalaby, “Bidirectional mode-division multiplexers with antireflection gratings,” Appl. Opt. 57(3), 476–484 (2018).
    [Crossref]
  17. H. Xu and Y. Shi, “Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays,” Opt. Lett. 41(20), 4815–4818 (2016).
    [Crossref]
  18. J. A. Odoeze, H. M. H. Shalaby, and M. O. Nawwar, “J-rib waveguide as a mode-division demultiplexer,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), p. AF1G.6.
  19. M. D. G. Mihail and M. Dumitrescu, “Effective index method for computation of the propagation constant and electromagnetic field distribution in z-uniform dielectric or semiconductior waveguides,” in Fifth Conference on Optics, 1998, (Proc. SPIE 3405, ROMOPTO ’97, 1998), p. 922.
  20. S. P. Pogossian, “A new approach to determining the waveguide mode index distribution,” Opt. Quantum Electron. 25(6), 417–422 (1993).
    [Crossref]
  21. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16(10), 1851–1853 (1998).
    [Crossref]

2018 (3)

2016 (3)

2015 (2)

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

2014 (2)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
[Crossref]

2013 (2)

2011 (1)

1998 (1)

1993 (1)

S. P. Pogossian, “A new approach to determining the waveguide mode index distribution,” Opt. Quantum Electron. 25(6), 417–422 (1993).
[Crossref]

1982 (1)

Berdagué, S.

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Biberman, A.

K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).

Cardenas, J.

Carloni, L.

K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).

Chan, J.

K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).

Chang, W.

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Chen, W.

Cheng, M.

Dai, D.

Dai, T.

Dorin, B. A.

Dumitrescu, M.

M. D. G. Mihail and M. Dumitrescu, “Effective index method for computation of the propagation constant and electromagnetic field distribution in z-uniform dielectric or semiconductior waveguides,” in Fifth Conference on Optics, 1998, (Proc. SPIE 3405, ROMOPTO ’97, 1998), p. 922.

Facq, P.

Foschini, G. J.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Gao, Y.

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

Gui, C.

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

Hendry, G.

K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).

Hu, T.

Jiang, G.

Jiang, X.

Li, D.

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Liu, D.

Lu, L.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Mihail, M. D. G.

M. D. G. Mihail and M. Dumitrescu, “Effective index method for computation of the propagation constant and electromagnetic field distribution in z-uniform dielectric or semiconductior waveguides,” in Fifth Conference on Optics, 1998, (Proc. SPIE 3405, ROMOPTO ’97, 1998), p. 922.

Nawwar, M. O.

J. A. Odoeze, H. M. H. Shalaby, and M. O. Nawwar, “J-rib waveguide as a mode-division demultiplexer,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), p. AF1G.6.

Nawwar, O. M.

Odoeze, J. A.

J. A. Odoeze, H. M. H. Shalaby, and M. O. Nawwar, “J-rib waveguide as a mode-division demultiplexer,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), p. AF1G.6.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Pan, Z.

Pogossian, S. P.

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16(10), 1851–1853 (1998).
[Crossref]

S. P. Pogossian, “A new approach to determining the waveguide mode index distribution,” Opt. Quantum Electron. 25(6), 417–422 (1993).
[Crossref]

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Pokharel, R. K.

Qiu, H.

Ren, X.

Shalaby, H. M.

Shalaby, H. M. H.

H. M. H. Shalaby, “Bidirectional mode-division multiplexers with antireflection gratings,” Appl. Opt. 57(3), 476–484 (2018).
[Crossref]

H. M. H. Shalaby, “Bi-directional coupler as a mode-division multiplexer/demultiplexer,” J. Lightwave Technol. 34(15), 3633–3640 (2016).
[Crossref]

J. A. Odoeze, H. M. H. Shalaby, and M. O. Nawwar, “J-rib waveguide as a mode-division demultiplexer,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), p. AF1G.6.

Shao, H.

Shi, L.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Shi, Y.

Stern, B.

Sun, C.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Tzuang, L. D.

Vescan, L.

Vonsovici, A.

Wang, G.

Wang, J.

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref]

Wang, P.

Winzer, P. J.

P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
[Crossref]

P. J. Winzer, “Modulation and multiplexing in optical communications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, (Optical Society of America, 2009), p. CTuL3.

Xu, H.

Yang, J.

Yang, T.

Ye, M.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Ye, W. N.

Yu, H.

Yu, P.

Yu, Y.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Zhang, M.

Zhang, X.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Zhang, Y.

Zhang, Z.

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

Zhou, L.

Zhu, X.

Appl. Opt. (3)

IEEE Photon. J. (1)

C. Gui, Y. Gao, Z. Zhang, and J. Wang, “On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler,” IEEE Photon. J. 7(6), 1–7 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. P. Pogossian, “A new approach to determining the waveguide mode index distribution,” Opt. Quantum Electron. 25(6), 417–422 (1993).
[Crossref]

Optica (1)

Other (5)

P. J. Winzer, “Modulation and multiplexing in optical communications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, (Optical Society of America, 2009), p. CTuL3.

K. Bergman, L. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic Network-on-Chip Design (Springer, 2014).

J. A. Odoeze, H. M. H. Shalaby, and M. O. Nawwar, “J-rib waveguide as a mode-division demultiplexer,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016), p. AF1G.6.

M. D. G. Mihail and M. Dumitrescu, “Effective index method for computation of the propagation constant and electromagnetic field distribution in z-uniform dielectric or semiconductior waveguides,” in Fifth Conference on Optics, 1998, (Proc. SPIE 3405, ROMOPTO ’97, 1998), p. 922.

C. Sun, Y. Yu, M. Ye, L. Shi, and X. Zhang, “An integrated mode (de)multiplexer based on adiabatic couplers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM1F.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic configuration of flying-bird mode-division demultiplexer: (a) Perspective view; (b) Cross-sectional view.
Fig. 2.
Fig. 2. Cross-sectional electric field distributions for first three TE-like modes ( ${\rm{HE}}_{11}$ , ${\rm{HE}}_{12}$ , and ${\rm{HE}}_{13}$ ) using MODE simulation.
Fig. 3.
Fig. 3. Cross-sectional electric field distributions for first three TM-like modes ( ${\rm{EH}}_{11}$ , ${\rm{EH}}_{12}$ , and ${\rm{EH}}_{13}$ ) using MODE simulation.
Fig. 4.
Fig. 4. Electric field profiles of input waveguide when excited with TM-like modes: (a) ${\rm{EH}}_{11}$ , (b) ${\rm{EH}}_{12}$ , and (c) ${\rm{EH}}_{13}$ .
Fig. 5.
Fig. 5. Electric field profiles of output waveguides from FBMDD when excited with TM-like modes: (a) ${\rm{EH}}_{11}$ , (b) ${\rm{EH}}_{12}$ , and (c) ${\rm{EH}}_{13}$ .
Fig. 6.
Fig. 6. Propagation of modes inside an FBMDD: (a) ${\rm{EH}}_{11}$ , (b) ${\rm{EH}}_{12}$ , and (c) ${\rm{EH}}_{13}$ .
Fig. 7.
Fig. 7. 3D-FDTD simulation of both insertion losses and crosstalks versus wavelength of proposed FBMDD when excited by: (a) ${\rm{EH}}_{11}$ , (b) ${\rm{EH}}_{12}$ , and (c) ${\rm{EH}}_{13}$ modes.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k 0 d n 1 2 n eff 2 m π = tan 1 ( n eff 2 n 2 2 n 1 2 n eff 2 ) + tan 1 ( n eff 2 n 3 2 n 1 2 n eff 2 ) ; for TE modes , k 0 d n 1 2 n eff 2 m π = tan 1 [ ( n 1 n 2 ) 2 n eff 2 n 2 2 n 1 2 n eff 2 ] + tan 1 [ ( n 1 n 3 ) 2 n eff 2 n 3 2 n 1 2 n eff 2 ] ; for TM modes ,
n e f f c 2 ( m ) n 1 2 ( m + 1 ) 2 ( π k 0 h c , e q ) 2 n e f f r 2 ( m ) n 1 2 ( m + 1 ) 2 ( π k 0 h r , e q ) 2 n e f f l 2 ( m ) n 1 2 ( m + 1 ) 2 ( π k 0 h l , e q ) 2 ,
Q = { 1 n 1 2 n 2 2 + 1 n 1 2 n 3 2 ; for TE modes, ( n 2 / n 1 ) 2 n 1 2 n 2 2 + ( n 3 / n 1 ) 2 n 1 2 n 3 2 ; for TM modes .
N w g c 2 ( , m ) n e f f c 2 ( m ) ( + 1 ) 2 ( π k 0 w c , e q ( m ) ) 2 N w g r 2 ( , m ) n e f f r 2 ( m ) ( + 1 ) 2 ( π k 0 w r , e q ( m ) ) 2 N w g l 2 ( , m ) n e f f l 2 ( m ) ( + 1 ) 2 ( π k 0 w l , e q ( m ) ) 2
R c ( m ) = { 1 n e f f c 2 ( m ) n e f f r 2 ( m ) + 1 n e f f c 2 ( m ) n e f f l 2 ( m ) ; for TE modes, ( n e f f r ( m ) / n e f f c ( m ) ) 2 n e f f c 2 ( m ) n e f f r 2 ( m ) + ( n e f f l ( m ) / n e f f c ( m ) ) 2 n e f f c 2 ( m ) n e f f l 2 ( m ) ; for TM modes, R r ( m ) = { 1 n e f f r 2 ( m ) n e f f c 2 ( m + 1 ) + 1 n e f f r 2 ( m ) n 3 2 ; for TE modes, ( n e f f c ( m + 1 ) / n e f f r ( m ) ) 2 n e f f r 2 ( m ) n e f f c 2 ( m + 1 ) + ( n 3 / n e f f r ( m ) ) 2 n e f f r 2 ( m ) n 3 2 ; for TM modes, R l ( m ) = { 1 n e f f l 2 ( m ) n e f f c 2 ( m + 2 ) + 1 n e f f l 2 ( m ) n 3 2 ; for TE modes, ( n e f f c ( m + 2 ) / n e f f l ( m ) ) 2 n e f f l 2 ( m ) n e f f c 2 ( m + 2 ) + ( n 3 / n e f f l ( m ) ) 2 n e f f l 2 ( m ) n 3 2 ; for TM modes.
1 / 2 < s r < 1 ,
t c < 2 s r 1 s r 2 ,
1 / 3 < s l < 1 / 2 ,
t r < 2 s r s l s r 2 s l 2 ,
t l < 2 s l s grd s l 2 s grd 2 ,

Metrics