Abstract

In this paper, the spatially-resolved characteristics, such as emission intensity, plasma temperature, and electron density, of femtosecond filament induced soil plasma were experimentally studied, and the spatial evolution of the limit of detection (LOD) was obtained along the filament channel propagation. The experiment results show that the spectrum intensity and LOD of Pb I 405.78 nm trended opposingly along the filament channel propagation, the maximum spectrum intensity and the minimum LOD are obtained at a certain distance along the filament channel, and the minimum LOD value for Pb element is 1.31 ± 0.04 ppm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy

Shixiang Ma, Yun Tang, Yuyang Ma, Yanwu Chu, Feng Chen, Zhenlin Hu, Zhihao Zhu, Lianbo Guo, Xiaoyan Zeng, and Yongfeng Lu
Opt. Express 27(10) 15091-15099 (2019)

Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, and M. C. Phillips
Opt. Express 23(21) 27113-27122 (2015)

Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips
Opt. Express 24(16) 17941-17949 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Windom and D. W. Hahn, “Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
    [Crossref]
  2. A. Ismaël, B. Bousquet, K. M.-L. Pierrès, G. Travaillé, L. Canioni, and S. Roy, “In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy(LIBS),” Appl. Spectrosc. 65(5), 467–473 (2011).
    [Crossref]
  3. A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
    [Crossref]
  4. Y. Tang, J. M. Li, Z. Q. Hao, S. S. Song, Z. H. Zhu, L. B. Guo, X. Y. Li, J. Duan, and Y. F. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
    [Crossref]
  5. C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta, Part B 56(6), 619–628 (2001).
    [Crossref]
  6. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 50(9), 1175–1181 (1996).
    [Crossref]
  7. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
    [Crossref]
  8. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
    [Crossref]
  9. A. Marcinkevčius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and N. Junji, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277 (2001).
    [Crossref]
  10. Q. Zhao, Y. Dai, T. Li, B. Liu, M. Yang, and G. Yin, “Femtosecond laser ablation of microstructures in fiber and application in magnetic field sensing,” Opt. Lett. 39(7), 1905–1908 (2014).
    [Crossref]
  11. E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233A–242A (2007).
    [Crossref]
  12. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  13. G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
    [Crossref]
  14. H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31(10), 1540–1542 (2006).
    [Crossref]
  15. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
    [Crossref]
  16. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. Michael Ange, “Energy Dependence of Emission Intensity and Temperature in a LIBS Plasma Using Femtosecond Excitation,” Appl. Spectrosc. 55(3), 286–291 (2001).
    [Crossref]
  17. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).
  18. Y.-Y. Ma, X. Lu, T.-T. Xi, Q.-H. Gong, and J. Zhang, “Widening of Long-range femtosecond laser filaments in turbulent air,” Opt. Express 16(12), 8332–8341 (2008).
    [Crossref]
  19. S. S. Harilal, J. Yeak, and M. C. Phillip, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
    [Crossref]
  20. I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
    [Crossref]
  21. D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
    [Crossref]
  22. S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
    [Crossref]
  23. A. K. Shaik, Ajmathulla, and V. Rao Soma, “Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode,” Opt. Lett. 43(15), 3465–3468 (2018).
    [Crossref]
  24. S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
    [Crossref]
  25. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
    [Crossref]
  26. H. Hou, B. Yang, X. Mao, V. Zorba, P. Ran, and R. E. Russo, “Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel,” Opt. Express 26(10), 13425–13435 (2018).
    [Crossref]
  27. V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
    [Crossref]
  28. B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
    [Crossref]
  29. N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
    [Crossref]
  30. T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42(11), 6588–6601 (1990).
    [Crossref]

2018 (5)

2017 (1)

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (4)

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Q. Zhao, Y. Dai, T. Li, B. Liu, M. Yang, and G. Yin, “Femtosecond laser ablation of microstructures in fiber and application in magnetic field sensing,” Opt. Lett. 39(7), 1905–1908 (2014).
[Crossref]

2013 (1)

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

2011 (1)

2010 (1)

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

2009 (2)

B. C. Windom and D. W. Hahn, “Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

2004 (2)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

2002 (1)

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

2001 (3)

1996 (1)

1990 (1)

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42(11), 6588–6601 (1990).
[Crossref]

Ackermann, R.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Aguilera, J. A.

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta, Part B 56(6), 619–628 (2001).
[Crossref]

Ajmathulla,

Alti, K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Aragón, C.

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta, Part B 56(6), 619–628 (2001).
[Crossref]

Becker, A.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

Bengoechea, J.

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta, Part B 56(6), 619–628 (2001).
[Crossref]

Bousquet, B.

Brumfield, B. E.

S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref]

Bugaev, I. A.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Canioni, L.

Chao, S.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Chen, M.

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Cheng, J.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Cheng, L.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Chin, S. L.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31(10), 1540–1542 (2006).
[Crossref]

Chuang, D.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Cremers, D. A.

Dai, Y.

De Lucia, F. C.

Dearden, G.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Dong, Q. L.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Duan, J.

Eland, K. L.

Eppler, A. S.

Ferris, M. J.

Fuhr, J. R.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Fujimoto, T.

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42(11), 6588–6601 (1990).
[Crossref]

Ghebregziabher, I.

Gold, D. M.

Gong, Q.-H.

Goode, S. R.

Gottfried, J. L.

Guo, L. B.

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Gurevich, E. L.

Hahn, D. W.

B. C. Windom and D. W. Hahn, “Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Hao, Z. Q.

Harilal, S. S.

Hartig, K. C.

S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref]

He, J. L.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Hergenröder, R.

Hickmott, D. D.

Hou, H.

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Ismaël, A.

Jin,

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Jing-Quan, L.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Jovanovic, I.

Junji, N.

Juodkazis, S.

Ka’ko, I. A.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Kasparian, J.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Konjevic, N.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Koskelo, A. C.

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Lahaye, N. L.

S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Lesage, A.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Li, J. M.

Li, S.

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Li, T.

Li, X. Y.

Lin,

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Liu, A. H.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Liu, B.

Liu, C.-S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Liu, W.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

H. L. Xu, W. Liu, and S. L. Chin, “Remote time-resolved filament-induced breakdown spectroscopy of biological materials,” Opt. Lett. 31(10), 1540–1542 (2006).
[Crossref]

Lu, L.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Lu, X.

Lu, Y. F.

Ma, Y.-Y.

Man, B. Y.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Mao, X.

Marcinkevcius, A.

Matsuo, S.

McWhirter, R. W. P.

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42(11), 6588–6601 (1990).
[Crossref]

Méjean, G.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Michael Ange, S.

Misawa, H.

Miwa, M.

Miziolek, A. W.

Nikolaev, Y. N.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Perrie, W.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Phillip, M. C.

Phillips, M. C.

S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref]

Pierrès, K. M.-L.

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Ran, P.

Rao Soma, V.

Rohwetter, P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Roy, S.

Russo, R. E.

Salmon, E.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Seliverstova, I. V.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Shaik, A. K.

Shang, S.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Sidorina, Y. N.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Simard, P. T.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

Song, S. S.

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Stratis, D. N.

Suri, B. M.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Tang, Y.

Théberge, F.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

Travaillé, G.

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Wang, X. T.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Watanabe, M.

Watkins, K.

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Wei, X. Q.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Wiese, W. L.

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Windom, B. C.

B. C. Windom and D. W. Hahn, “Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

Wolf, J.-P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wöste, L.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Xi, T.-T.

Xu, H. L.

Xun, G.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

XunGao, S.

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Yang, B.

Yang, D.

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Yang, M.

Yao, S.

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Yeak, J.

Yin, G.

Yu, J.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Yuanfei, J. A.

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Zaytsev, S. M.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Zhang, J.

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Y.-Y. Ma, X. Lu, T.-T. Xi, Q.-H. Gong, and J. Zhang, “Widening of Long-range femtosecond laser filaments in turbulent air,” Opt. Express 16(12), 8332–8341 (2008).
[Crossref]

Zhang, Q. G.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

Zhao, J.

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Zhao, Q.

Zhu, Z. H.

Zorba, V.

Zorov, N. B.

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

Zuo-Qiang, H.

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

Acta Phys. Sin. (2)

G. Xun, D. Chuang, L. Cheng, L. Lu, S. Chao, H. Zuo-Qiang, and L. Jing-Quan, “Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy,” Acta Phys. Sin. 63(9), 095203 (2014).
[Crossref]

D. Yang, S. Li, J. A. Yuanfei, M. Chen, and Jin, “Temperature and electron density in femtosecond filament-induced Cu plasma,” Acta Phys. Sin. 66(11), 115201 (2017).
[Crossref]

Appl. Phys. Lett. (1)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Appl. Phys. Rev. (1)

S. S. Harilal, B. E. Brumfield, N. L. Lahaye, K. C. Hartig, and M. C. Phillips, “Optical spectroscopy of laser-produced plasmas for stand off isotopic analysis,” Appl. Phys. Rev. 5(2), 021301 (2018).
[Crossref]

Appl. Spectrosc. (4)

J. Anal. At. Spectrom. (3)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond Laser-Induced Breakdown Spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

A. M. Popov, T. A. Labutin, S. M. Zaytsev, I. V. Seliverstova, N. B. Zorov, I. A. Ka’ko, Y. N. Sidorina, I. A. Bugaev, and Y. N. Nikolaev, “Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 29(10), 1925–1933 (2014).
[Crossref]

B. C. Windom and D. W. Hahn, “Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24(12), 1665–1675 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A: Pure Appl. Opt. 6(1), 17–21 (2004).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. Konjevic, A. Lesage, J. R. Fuhr, and W. L. Wiese, “ Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms,” J. Phys. Chem. Ref. Data 31(3), 819–927 (2002).
[Crossref]

Opt. Commun. (1)

S. Yao, J. Zhang, S. XunGao, J. Zhao, and Lin, “The effect of pulse energy on plasma characteristics of femtosecond filament assisted ablation of soil,” Opt. Commun. 425(15), 152–156 (2018).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46(1), 88–102 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Plasmas. (1)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Plasmas. 39(10), 1290–1384 (2014).

Phys. Rev. A (1)

T. Fujimoto and R. W. P. McWhirter, “Validity criteria for local thermodynamic equilibrium in plasma spectroscopy,” Phys. Rev. A 42(11), 6588–6601 (1990).
[Crossref]

Pramana (1)

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana 74(6), 983–993 (2010).
[Crossref]

Spectrochim. Acta, Part B (1)

C. Aragón, J. Bengoechea, and J. A. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim. Acta, Part B 56(6), 619–628 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup
Fig. 2.
Fig. 2. Spatial evolutions of spectral intensity of Fe I 404.58 nm and Pb I 405.78 nm (delay time of 100 ns, 200 ns and 300 ns)
Fig. 3.
Fig. 3. Spatial evolutions of the plasma temperature (left) and electron density (right) at delay time of 100 ns, 200 ns and 300 ns
Fig. 4.
Fig. 4. The calibration curve of Pb element at the positions of filament channel 480 mm
Fig. 5.
Fig. 5. The spatial distribution of LOD and R2 along the filament channel propagation

Tables (2)

Tables Icon

Table 1. Spectral parameters of spectral lines of FeI

Tables Icon

Table 2. Standard deviation of background signal of different positions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln ( I λ g A ) = 1 k B T E + ln ( h c L n 4 π P )
Δ λ 1 / 2 = 2 ω ( n e 10 16 )
C lim = 3 S b a c M

Metrics