Abstract

There is growing interest in superconducting nanowire single-photon detectors (SNSPDs) for their high detection efficiency, low noise, and broad wavelength-sensitivity range. Typically, silica fibers are used to deliver light to the detectors inside the cryostat, which works well for wavelengths from visible through 1550 nm. To access longer-wavelength infrared photons, other types of fibers, such as chalcogenide and fluoride fibers, need to be used. Here, we examine the infrared-wavelength transmission of straight and coiled silica optical fibers as candidates to couple infrared light to SNSPDs. We find that the silica fibers offer good transmission up to 2.2 μm wavelength. Above this wavelength, the transmission rolls off; the fibers exhibit 3 dB/m loss at 2.5 μm. High bend-loss sensitivity of some fibers can be used to adjust the long-wavelength transmission cutoff of the fiber to limit noise photons due to blackbody radiation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of bend loss in single mode fibers with ultra-high-resolution photon-counting optical time domain reflectometer

L. E. Y. Herrera, G. C. Amaral, and J. P. von der Weid
Appl. Opt. 55(5) 1177-1182 (2016)

Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber

Natalie V. Wheeler, Alexander M. Heidt, Naveen K. Baddela, Eric Numkam Fokoua, John R. Hayes, Seyed R. Sandoghchi, Francesco Poletti, Marco N. Petrovich, and David J. Richardson
Opt. Lett. 39(2) 295-298 (2014)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref] [PubMed]
  2. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  3. R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
    [Crossref]
  4. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
    [Crossref] [PubMed]
  5. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
    [Crossref] [PubMed]
  6. L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
    [Crossref]
  7. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  8. T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
    [Crossref]
  9. X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
    [Crossref] [PubMed]
  10. K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
    [Crossref]
  11. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40, 3428–3431 (2015).
    [Crossref] [PubMed]
  12. W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
    [Crossref]
  13. Sectors & Applications: Case Studies—Gas Spectroscopy, http://www.eblanaphotonics.com/sectors-and-applications.php .
  14. B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
    [Crossref]
  15. D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
    [Crossref]
  16. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
    [Crossref]
  17. Fused Silica / Fused Quartz, https://escooptics.com/pages/materials-fused-silica-quartz .
  18. H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
    [Crossref]
  19. R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
    [Crossref]
  20. H. Murata and N. Inagaki, “Low-loss single-mode fiber development and splicing research in Japan,” IEEE J. Quantum Electron. 17, 835–849 (1981).
    [Crossref]
  21. Single Mode Fiber: 1.7 to 2.3 μm, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .
  22. Corning SMF-28e+ Optical Fiber, http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_6-13.pdf .
  23. M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
    [Crossref]
  24. J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
    [Crossref]
  25. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
    [Crossref]
  26. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
    [Crossref]
  27. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15, 15674–15701 (2007).
    [Crossref] [PubMed]

2018 (2)

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

2017 (2)

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

2015 (3)

2014 (3)

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
[Crossref] [PubMed]

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

2013 (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

2012 (2)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

2011 (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

2010 (3)

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

2007 (2)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15, 15674–15701 (2007).
[Crossref] [PubMed]

1981 (1)

H. Murata and N. Inagaki, “Low-loss single-mode fiber development and splicing research in Japan,” IEEE J. Quantum Electron. 17, 835–849 (1981).
[Crossref]

1979 (1)

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[Crossref]

1976 (2)

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
[Crossref]

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Abouraddy, A. F.

Antipov, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

Araki, S.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Badding, J. V.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Ballato, J.

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

Baravets, Y.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Beaudoin, G.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Beveratos, A.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Chen, L.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Danto, S.

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Divochiy, A.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

Divochiy, A. V.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Elvira, D.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Fain, B.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Fink, Y.

Fujiwara, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gol’tsman, G. N.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Goltsman, G.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Honzátko, P.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Horiguchi, M.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Hübers, H.-W.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Ilin, K.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Inagaki, N.

H. Murata and N. Inagaki, “Low-loss single-mode fiber development and splicing research in Japan,” IEEE J. Quantum Electron. 17, 835–849 (1981).
[Crossref]

Izawa, T.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Jalali, B.

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

Jiang, M.

Kašík, I.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Korneev, A.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Korneeva, Y.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Lau, J. A.

Li, H.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
[Crossref] [PubMed]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, X.

Liu, X. Y.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Lusche, R.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Lv, C. L.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Marcuse, D.

Marsili, F.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Michon, A.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Miki, S.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Mirin, R. P.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Moriyama, T.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Murata, H.

H. Murata and N. Inagaki, “Low-loss single-mode fiber development and splicing research in Japan,” IEEE J. Quantum Electron. 17, 835–849 (1981).
[Crossref]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Nam, S. W.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Olshansky, R.

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[Crossref]

Osanai, H.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Patriarche, G.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Peng, W.

Peterka, P.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Petit, L.

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

Písarík, M.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Qiu, W.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Robert-Philip, I.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Sagnes, I.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Sasaki, M.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Schermer, R. T.

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15, 15674–15701 (2007).
[Crossref] [PubMed]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Schwarzer, D.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Semenov, A.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shibata, H.

Shimizu, K.

Shioda, T.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Siegel, M.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Smirnov, K.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

Smirnov, K. V.

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M. J.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Stolyarov, A. M.

Takata, H.

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Takesue, H.

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Tao, G.

Todorov, F.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Tokura, Y.

Trifonov, A.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Troles, J.

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

Vachtomin, Y.

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Vodolazov, D.

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

Wang, Z.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
[Crossref] [PubMed]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Wodtke, A. M.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref] [PubMed]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Xie, X.

Xie, X. M.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Yamashita, T.

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Yang, X.

Yang, X. Y.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

You, L.

You, L. X.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Zhang, C. J.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Zhang, L.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
[Crossref] [PubMed]

Zhang, W.

Zhang, W. J.

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Zhao, J.

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

Zvánovec, S.

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Accounts Chem. Res. (1)

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science,” Accounts Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Express (2)

K. Smirnov, Y. Vachtomin, A. Divochiy, A. Antipov, and G. Goltsman, “Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers,” Appl. Phys. Express 8, 022501 (2015).
[Crossref]

T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region,” Appl. Phys. Express 3, 102502 (2010).
[Crossref]

Appl. Phys. Lett. (1)

D. Elvira, A. Michon, B. Fain, G. Patriarche, G. Beaudoin, I. Robert-Philip, Y. Vachtomin, A. V. Divochiy, K. V. Smirnov, G. N. Gol’tsman, I. Sagnes, and A. Beveratos, “Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm,” Appl. Phys. Lett. 97, 131907 (2010).
[Crossref]

Electron. Lett. (1)

H. Osanai, T. Shioda, T. Moriyama, S. Araki, M. Horiguchi, T. Izawa, and H. Takata, “Effect of dopants on transmission loss of low-OH-content optical fibres,” Electron. Lett. 12, 549–550 (1976).
[Crossref]

Fibers (1)

J. Ballato, H. Ebendorff-Heidepriem, J. Zhao, L. Petit, and J. Troles, “Glass and process development for the next generation of optical fibers: a review,” Fibers 5(1), 11 (2017).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Murata and N. Inagaki, “Low-loss single-mode fiber development and splicing research in Japan,” IEEE J. Quantum Electron. 17, 835–849 (1981).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

J. Appl. Phys. (1)

R. Lusche, A. Semenov, K. Ilin, M. Siegel, Y. Korneeva, A. Trifonov, A. Korneev, G. Goltsman, D. Vodolazov, and H.-W. Hübers, “Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors,” J. Appl. Phys. 116, 043906 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Jalali, “Nonlinear optics in the mid-infrared,” Nat. Photonics 4, 506–508 (2010).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Písařík, P. Peterka, S. Zvánovec, Y. Baravets, F. Todorov, I. Kašík, and P. Honzátko, “Fused fiber components for “eye-safe” spectral region around 2 μm,” Opt. Quantum Electron. 46, 603–611 (2014).
[Crossref]

Rev. Mod. Phys. (1)

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Supercond. Sci. Technol. (2)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

W. J. Zhang, X. Y. Yang, H. Li, L. X. You, C. L. Lv, L. Zhang, C. J. Zhang, X. Y. Liu, Z. Wang, and X. M. Xie, “Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face,” Supercond. Sci. Technol. 31, 035012 (2018).
[Crossref]

Other (4)

Sectors & Applications: Case Studies—Gas Spectroscopy, http://www.eblanaphotonics.com/sectors-and-applications.php .

Fused Silica / Fused Quartz, https://escooptics.com/pages/materials-fused-silica-quartz .

Single Mode Fiber: 1.7 to 2.3 μm, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .

Corning SMF-28e+ Optical Fiber, http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_6-13.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Diagram of the experimental setup. Reflections from two CaF2 plates attenuated the laser to milliwatt level. Detectors 1 and 3 (D1 and D3) were thermal power meters used to monitor the power while the transmission through the fiber under test was measured with an InAs detector (D2). The wavelength of the laser was measured with an infrared wavemeter preceded by a silver turning mirror (M). The transmission is measured by comparing the power at D2 with and without the fiber under test. Dashed lines indicate electrical connections. The lower-right inset shows the measured transmission of the fiber splitter.
Fig. 2
Fig. 2 (a) Transmission of different lengths of SMF-28 and SM2000 fiber. Transmission of (b) 1 m SMF-28 fiber and (c) 1 m SM2000 fiber at different coil diameters. A 30-cm-long section of each fiber was coiled. The SMF-28 fiber is more sensitive to bending, which is reflected by the larger coiling diameters in (b) compared to (c).
Fig. 3
Fig. 3 (a) Comparison of transmission for 1 meter lengths of fiber. We compare our measured transmission for SMF-28 fiber to the transmission calculated from Refs. [18,20,21,23,24]. The line for Ref. [18] represents an extrapolation of data taken below 2 μm, which is in poor agreement with other measurements. (b) Zoom in of the same transmission data in the region between 1800 nm and 2300 nm.