Abstract

Using complex master-slave interferometry, we demonstrate extended axial range optical coherence tomography for two commercially available swept sources, well beyond the limit imposed by their k-clocks. This is achieved without k-domain re-sampling and without engaging any additional Mach-Zehnder interferometer providing a k-clock signal to the digitizer. An axial imaging range exceeding 17 mm with an attenuation of less than 30 dB is reported using two commercially available swept sources operating at 1050 nm and a 100 kHz repetition rate. This procedure has more than trebled the range achievable using the k-clock signal provided by the manufacturers. An analysis is presented on the impact that the digitization has on the axial range and resolution of the system.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Master/slave interferometry – ideal tool for coherence revival swept source optical coherence tomography

Adrian Bradu, Sylvain Rivet, and Adrian Podoleanu
Biomed. Opt. Express 7(7) 2453-2468 (2016)

Interleaved optical coherence tomography

Hee Yoon Lee, Helge Sudkamp, Tahereh Marvdashti, and Audrey K. Ellerbee
Opt. Express 21(22) 26542-26556 (2013)

Group refractive index and group velocity dispersion measurement by complex master slave interferometry

Sylvain Rivet, Adrian Bradu, Fiona Bairstow, Hisham Forrière, and Adrian Podoleanu
Opt. Express 26(17) 21831-21842 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
    [Crossref] [PubMed]
  2. Z. Wang, H.-C. Lee, O. O. Ahsen, B. Lee, W. Choi, B. Potsaid, J. Liu, V. Jayaraman, A. Cable, M. F. Kraus, and et al., “Depth-encoded all-fiber swept source polarization sensitive OCT,” Biomed. Opt. Express 5, 2931–2949 (2014).
    [Crossref] [PubMed]
  3. P. Eugui, A. Lichtenegger, M. Augustin, D. J. Harper, M. Muck, T. Roetzer, A. Wartak, T. Konegger, G. Widhalm, C. K. Hitzenberger, A. Woehrer, and B. Baumann, “Beyond backscattering: optical neuroimaging by BRAD,” Biomed. Opt. Express 9, 2476–2494 (2018).
    [Crossref] [PubMed]
  4. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3, 1496–1503 (2016).
    [Crossref]
  5. J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
    [Crossref]
  6. J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8, 420–435 (2017).
    [Crossref] [PubMed]
  7. J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, (Springer, 2015), chap. 2, pp. 65–94.
    [Crossref]
  8. B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
    [Crossref]
  9. K. Liang, O. O. Ahsen, Z. Wang, H.-C. Lee, W. Liang, B. M. Potsaid, T.-H. Tsai, M. G. Giacomelli, V. Jayaraman, H. Mashimo, X. Li, and J. G. Fujimoto, “Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source,” Opt. Lett. 42, 3193–3196 (2017).
    [Crossref] [PubMed]
  10. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [Crossref] [PubMed]
  11. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
    [Crossref] [PubMed]
  12. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
    [Crossref] [PubMed]
  13. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24, 2885–2904 (2016).
    [Crossref] [PubMed]
  14. A. G. Podoleanu and A. Bradu, “Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21, 19324–19338 (2013).
    [Crossref] [PubMed]
  15. M. J. Marques, S. Rivet, A. Bradu, and A. G. Podoleanu, “Novel software package to facilitate operation of any spectral (Fourier) OCT system,” in European Conference on Biomedical Optics, (Optical Society of America, 2017), p. 104160B.
  16. A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23, 14148–14161 (2015).
    [Crossref] [PubMed]
  17. A. Bradu, S. Rivet, and A. Podoleanu, “Master/slave interferometry–ideal tool for coherence revival swept source optical coherence tomography,” Biomed. Opt. Express 7, 2453–2468 (2016).
    [Crossref] [PubMed]
  18. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3, 633–649 (2012).
    [Crossref] [PubMed]
  19. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37, 1883–1885 (2012).
    [Crossref] [PubMed]
  20. Axsun Technologies, “Swept lasers for OCT: 1060 & 1310 nm high speed swept laser engines,” Online. Last checked: 22 Sept 2017.
  21. Santec Corporation, “MEMS Based Swept Source HSL-10/20,” Last accessed: 23 Jul 2018.
  22. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
    [Crossref]
  23. R. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [Crossref] [PubMed]
  24. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
    [Crossref] [PubMed]
  25. R. Cernat, A. Bradu, N. M. Israelsen, O. Bang, S. Rivet, P. A. Keane, D.-G. Heath, R. Rajendram, and A. Podoleanu, “Gabor fusion master slave optical coherence tomography,” Biomed. Opt. Express 8, 813–827 (2017).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

2016 (3)

2015 (1)

2014 (1)

2013 (1)

2012 (3)

2010 (2)

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010).
[Crossref] [PubMed]

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[Crossref] [PubMed]

2008 (2)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

2006 (1)

2002 (1)

Ahsen, O. O.

Atia, W.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Augustin, M.

Bachmann, A.

Bang, O.

Baumann, B.

Bradu, A.

Bustamante, T.

Cable, A.

Cable, A. E.

Cernat, R.

Chen, L.

Chen, Z.

Choi, W.

Choma, M. A.

J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, (Springer, 2015), chap. 2, pp. 65–94.
[Crossref]

Cook, C.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Dhalla, A.-H.

Ding, Z.

Doerr, C.

Eugui, P.

Fabritius, T.

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

Feuchter, T.

Flanders, D.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Fujimoto, J. G.

Giacomelli, M. G.

Goldberg, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

Harper, D. J.

Heath, D.-G.

Hitzenberger, C. K.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

Israelsen, N. M.

Izatt, J. A.

Jayaraman, V.

Johnson, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Keane, P. A.

Konegger, T.

Kraus, M. F.

Kuo, A.

Kuznetsov, M.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Larson, N.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Lasser, T.

Lee, B.

Lee, H.-C.

Lee, K.-S.

Leick, L.

Leitgeb, R.

Li, X.

Liang, K.

Liang, W.

Lichtenegger, A.

Liu, J.

Makita, S.

Mallon, E.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Maria, M.

Marques, M. J.

M. J. Marques, S. Rivet, A. Bradu, and A. G. Podoleanu, “Novel software package to facilitate operation of any spectral (Fourier) OCT system,” in European Conference on Biomedical Optics, (Optical Society of America, 2017), p. 104160B.

Mashimo, H.

McKenzie, E.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Meemon, P.

Melendez, C.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Men, S.

J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
[Crossref]

Muck, M.

Murali, S.

Murdza, R.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Nankivil, D.

Nelson, J. S.

Nielson, T.

Podoleanu, A.

Podoleanu, A. G.

A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23, 14148–14161 (2015).
[Crossref] [PubMed]

A. G. Podoleanu and A. Bradu, “Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21, 19324–19338 (2013).
[Crossref] [PubMed]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[Crossref] [PubMed]

M. J. Marques, S. Rivet, A. Bradu, and A. G. Podoleanu, “Novel software package to facilitate operation of any spectral (Fourier) OCT system,” in European Conference on Biomedical Optics, (Optical Society of America, 2017), p. 104160B.

Potsaid, B.

Potsaid, B. M.

Rajendram, R.

Ren, H.

Rivet, S.

Roetzer, T.

Rolland, J. P.

Song, S.

J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
[Crossref]

J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8, 420–435 (2017).
[Crossref] [PubMed]

Steinmann, L.

Swanson, E.

Thompson, K. P.

Tsai, T.-H.

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

Van der Jeught, S.

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[Crossref] [PubMed]

Villiger, M.

Wang, R. K.

J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
[Crossref]

J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8, 420–435 (2017).
[Crossref] [PubMed]

Wang, Z.

Wartak, A.

Wei, W.

Wells, B.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Whitney, P.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Widhalm, G.

Woehrer, A.

Woo, S.

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Xu, J.

J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
[Crossref]

J. Xu, S. Song, W. Wei, and R. K. Wang, “Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source,” Biomed. Opt. Express 8, 420–435 (2017).
[Crossref] [PubMed]

Yasuno, Y.

Zhao, Y.

Biomed. Opt. Express (6)

J. Biomed. Opt. (2)

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[Crossref] [PubMed]

J. Xu, S. Song, S. Men, and R. K. Wang, “Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations,” J. Biomed. Opt. 22, 116007 (2017).
[Crossref]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[Crossref] [PubMed]

Other (5)

M. J. Marques, S. Rivet, A. Bradu, and A. G. Podoleanu, “Novel software package to facilitate operation of any spectral (Fourier) OCT system,” in European Conference on Biomedical Optics, (Optical Society of America, 2017), p. 104160B.

Axsun Technologies, “Swept lasers for OCT: 1060 & 1310 nm high speed swept laser engines,” Online. Last checked: 22 Sept 2017.

Santec Corporation, “MEMS Based Swept Source HSL-10/20,” Last accessed: 23 Jul 2018.

J. A. Izatt, M. A. Choma, and A.-H. Dhalla, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, (Springer, 2015), chap. 2, pp. 65–94.
[Crossref]

B. Johnson, W. Atia, M. Kuznetsov, C. Cook, B. Goldberg, B. Wells, N. Larson, E. McKenzie, C. Melendez, E. Mallon, S. Woo, R. Murdza, P. Whitney, and D. Flanders, Optical Coherence Tomography: Technology and Applications2nd ed. (Springer, 2015), chap. 21, p. 639.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Swept-source OCT system used to demonstrate the long axial range CMS interferometry procedure. DC1-2: fiber-based directional couplers; FC1-3: fiber collimators; SXY: pair of galvo-scanners (Cambridge Technologies, model 6110); L1-2: achromatic lenses forming a telecentric configuration; MO: microscope objective; M1-2: flat protected silver mirrors; BPD: balanced photo-detector; PC: fiber-based inline polarization controller; TS: translation stage; ATS: AlazarTech ATS9360 digitizer board (inside computer); DSO: digital storage oscilloscope.
Fig. 2
Fig. 2 (a) Channeled spectrum (CS) visibility versus TS position (obtained with the CMS method), measured for the case with the k-clock enabled (continuous lines) and for two other data sets with the k-clock disabled, acquired with a digital sampling rate of 500 MS/s (large dashes) and 1.8 GS/s (short dashes); red trace: Axsun source; black trace: Santec source. The shaded regions denote the axial range attainable with the Axsun using the k-clock (red), the Santec using the k-clock (grey), and either source without the k-clock and a 500 MS/s sampling rate (light blue). (b) Axial resolution estimated from the A-scan peak FWHM for the same cases described in (a).
Fig. 3
Fig. 3 (a) Channeled spectrum (CS) visibility versus TS position (obtained with the CMS method), measured for the data sets acquired with either the DSO (continuous lines) and the ATS sampling at 1.8 GS/s (dashed lines); red traces correspond to the Axsun source, whereas black traces correspond to the Santec source. (b) Axial resolution estimated from the A-scan peak FWHM for the same cases described in (a). Top axis shows the dominant (peak) frequency in the channeled spectrum for each TS position, obtained via a FFT-based analysis. Blue vertical line in either plot shows the axial imaging limit imposed by the k-clock (350 MHz, corresponding to a channeled spectrum frequency of 175 MHz).
Fig. 4
Fig. 4 Comparison of the frequency spectra of the channeled spectra obtained at 7 different OPDs (with a spacing of 3.0 mm between them) for the Axsun source [top plot, (a)] and for the Santec source [bottom plot, (b)]. All data sets sampled with the DSO, set at 5 GS/s sampling rate.
Fig. 5
Fig. 5 Composite image generated from multiple B-scans, each taken at a different OPD setting with the Axsun source (separated by 1 mm in between B-scans). (a) B-scans acquired while using the source k-clock; (b) B-scans acquired by sampling the data at 1.8 GS/s using the ATS clock instead of the swept source k-clock. Scale bar units: mm. Transversal span is ∼ 1 mm. Blue arrow: maximum frequency attainable with the k-clock of the Axsun source (175 MHz, corresponding to a sampling rate of 350 MHz).