Abstract

A lightwave transmission system employing a centralized-light-source and vertical-cavity surface-emitting laser (VCSEL)-based upstream wavelength selector in two-way transmission is proposed and successfully demonstrated. The transmission performances of cable television (CATV), millimeter-wave (MMW), and baseband (BB) signals are investigated in a bidirectional way, with the assistance of the centralized-light-source and VCSEL-based upstream wavelength selector on the transmitter side. Extra optical components, such as a reflective semiconductor optical amplifier (RSOA), Fabry-Perot laser diode (FP LD), and phase modulator (PM), and the elaborated injection-locked technique are not required for upstream modulation, which largely reduce the cost and complication of two-way lightwave transmission systems. Excellent transmission performances of the carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 25-km single-mode fiber (SMF) transmission with 100-m free-space link/5-m RF wireless transmission. This proposed two-way lightwave transmission system shows a convenient and economic eminent structure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations

Chung-Yi Li, Hai-Han Lu, Ting-Chieh Lu, Chien-An Chu, Bo-Rui Chen, Chun-Yu Lin, and Peng-Chun Peng
Opt. Express 23(25) 31807-31816 (2015)

Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme

Hai-Han Lu, Chung-Yi Li, Hwan-Wei Chen, Chun-Ming Ho, Ming-Te Cheng, Sheng-Jhe Huang, Zih-Yi Yang, and Xin-Yao Lin
Opt. Express 24(15) 17250-17258 (2016)

Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands

Hai-Han Lu, Hsiao-Wen Wu, Chung-Yi Li, Chun-Ming Ho, Zih-Yi Yang, Ming-Te Cheng, and Chang-Kai Lu
Opt. Express 25(9) 9743-9754 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. T. Dat, A. Kanno, K. Inagaki, T. Umezawa, F. Rottenberg, J. Louveaux, N. Yamamoto, and T. Kawanishi, “High-speed and handover-free communications for high-speed trains using switched WDM fiber-wireless system,” in Conf. on Opt. Fiber Commun. (OFC 2018), pp. Th4D.2.
  2. Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
    [Crossref]
  3. H. H. Lu, H. W. Wu, C. Y. Li, C. M. Ho, Z. Y. Yang, M. T. Cheng, and C. K. Lu, “Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands,” Opt. Express 25(9), 9743–9754 (2017).
    [Crossref] [PubMed]
  4. C. Y. Lin, Y. C. Chi, C. T. Tsai, H. Y. Chen, and G. R. Lin, “Two-color laser diode for 54-Gb/s fiber-wired and 16-Gb/s MMW wireless OFDM transmissions,” Photon. Res. 5(4), 271–290 (2017).
    [Crossref]
  5. C. Y. Li, H. H. Lu, T. C. Lu, C. A. Chu, B. R. Chen, C. Y. Lin, and P. C. Peng, “Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations,” Opt. Express 23(25), 31807–31816 (2015).
    [Crossref] [PubMed]
  6. Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
    [Crossref]
  7. F. J. M. Cortes, J. J. G. Torres, and A. M. C. Soto, “Demonstration of injected locked Fabry-Perot laser diodes and reflected semiconductor optical amplifiers as colorless transmitters for WDM-PONs,” IEEE Colombian Conf. on Commun. and Computing (COLCOM 2017).
    [Crossref]
  8. M. Malekizandi, A. Chipouline, and F. Küppers, “Bidirectional UWB over fiber for WDM-PON system,” Opt. Express 25(6), 6840–6850 (2017).
    [Crossref] [PubMed]
  9. C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photonics Technol. Lett. 20(1), 12–14 (2008).
    [Crossref]
  10. C. Y. Li, H. S. Su, C. Y. Chen, H. H. Lu, H. W. Chen, C. H. Chang, and C. H. Jiang, “Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals,” Opt. Express 19(15), 14000–14007 (2011).
    [Crossref] [PubMed]
  11. C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
    [Crossref]
  12. C. Y. Li, H. H. Lu, C. L. Ying, C. J. Cheng, C. Y. Lin, Z. W. Wan, and J. H. Chen, “A full-duplex CATV/wireless-over-fiber lightwave transmission system,” Opt. Express 23(7), 9221–9232 (2015).
    [Crossref] [PubMed]

2018 (1)

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

2017 (4)

2015 (3)

2011 (1)

2008 (1)

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photonics Technol. Lett. 20(1), 12–14 (2008).
[Crossref]

Chang, C. H.

Chen, B. R.

Chen, C. Y.

Chen, H. W.

Chen, H. Y.

Chen, J. H.

Chen, Y. N.

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

Cheng, C. J.

Cheng, M. T.

Chi, Y. C.

Chipouline, A.

Chou, H. H.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

Chow, C. W.

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photonics Technol. Lett. 20(1), 12–14 (2008).
[Crossref]

Chu, C. A.

Ghassemlooy, Z.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

Guo, L.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Ho, C. M.

Huang, X. H.

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

Jiang, C. H.

Küppers, F.

Le-Minh, H.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

Li, C. Y.

Liaw, S. K.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

Lim, C.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Lin, C. Y.

Lin, G. R.

Liu, Y.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Lu, C. K.

Lu, H. H.

Lu, T. C.

Malekizandi, M.

Nirmalathas, A.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Peng, P. C.

Ranaweera, C.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Su, H. S.

Tsai, C. T.

Tsai, W. S.

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

Wan, Z. W.

Wang, Y. C.

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

Wong, E.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Wu, H. W.

Wu, Y. R.

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

Yang, Z. Y.

Ying, C. L.

Yu, Y.

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Yu, Y. L.

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

IEEE Photonics J. (2)

Y. L. Yu, S. K. Liaw, H. H. Chou, H. Le-Minh, and Z. Ghassemlooy, “A hybrid optical fiber and FSO system for bidirectional communications used in bridges,” IEEE Photonics J. 7(6), 7905509 (2015).
[Crossref]

C. Y. Li, H. H. Lu, W. S. Tsai, X. H. Huang, Y. C. Wang, Y. N. Chen, and Y. R. Wu, “A flexible two-way PM-based fiber-FSO convergence system,” IEEE Photonics J. 10(2), 7901509 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photonics Technol. Lett. 20(1), 12–14 (2008).
[Crossref]

IEEE/OSA. J. Opt. Commun. Netw. (1)

Y. Yu, C. Ranaweera, C. Lim, L. Guo, Y. Liu, A. Nirmalathas, and E. Wong, “Hybrid fiber-wireless network: An optimization framework for survivable deployment,” IEEE/OSA. J. Opt. Commun. Netw. 9(6), 466–478 (2017).
[Crossref]

Opt. Express (5)

Photon. Res. (1)

Other (2)

P. T. Dat, A. Kanno, K. Inagaki, T. Umezawa, F. Rottenberg, J. Louveaux, N. Yamamoto, and T. Kawanishi, “High-speed and handover-free communications for high-speed trains using switched WDM fiber-wireless system,” in Conf. on Opt. Fiber Commun. (OFC 2018), pp. Th4D.2.

F. J. M. Cortes, J. J. G. Torres, and A. M. C. Soto, “Demonstration of injected locked Fabry-Perot laser diodes and reflected semiconductor optical amplifiers as colorless transmitters for WDM-PONs,” IEEE Colombian Conf. on Commun. and Computing (COLCOM 2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The architecture of the proposed two-way lightwave transmission systems with centralized-light-source and VCSEL-based upstream wavelength selector.
Fig. 2
Fig. 2 (a) The optical spectrum after the dual-arm MZM. (b) An injection locking behavior enhances the intensity of the second-order sideband and generates the optical spectrum. (c) Two optical signals are recombined to generate the optical spectrum. (d) The downstream signal is optically promoted to a 10 Gbps/60 GHz MMW data signal and generates the optical spectrum. (e) The optical spectrum after the OBPF.
Fig. 3
Fig. 3 The measured CNR/CSO/CTB values for the scenarios over 25-km SMF transmission and over 25-km SMF transmission with 100-m free-space link.
Fig. 4
Fig. 4 The measured CNR/CSO/CTB values over 25-km SMF transmission with 100-m free-space link under the scenarios with/without 10 Gbps/30 GHz MMW data signal.
Fig. 5
Fig. 5 The BER values of 10 Gbps/60 GHz MMW data signal for the conditions of BTB, over 25-km SMF transmission (with CATV signal), and over 25-km SMF transmission with 5-m RF wireless transmission (with/without CATV signal).
Fig. 6
Fig. 6 For uplink transmission, the BER values of 10 Gbps BB data stream for the conditions of BTB and over 25-km SMF transmission (with/without MMW and CATV signals).

Tables (3)

Tables Icon

Table 1 The central wavelength of the VCSEL under different driving currents.

Tables Icon

Table 2 The received optical powers at a BER operation of 10−9 under different SMF lengths.

Tables Icon

Table 3 The received optical powers at a BER operation of 10−9 under different SMF lengths.