Abstract

We present a feasibility demonstration of the instantaneous determination of temperature fields in gaseous flows based on planar laser-induced fluorescence by integrating structured illumination with the two-line thermometry technique using nitric oxide as a tracer. This approach allows the capture of two fluorescence images originating from the simultaneous probe of two rotational states of nitric oxide (X2Π, v” = 0) using one detector and their subsequent deconvolution using spatial frequency analysis. Average experimental temperature measurements in an underexpanded jet demonstrate the viability of this approach, suggesting that the laser spatial modulation frequency and laser orientation with respect to the flow field under study impose the achievable spatial resolution limits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO

Michael P. Lee, Brian K. McMillin, and Ronald K. Hanson
Appl. Opt. 32(27) 5379-5396 (1993)

Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence

Jennifer L. Palmer and Ronald K. Hanson
Appl. Opt. 35(3) 485-499 (1996)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997).
    [Crossref] [PubMed]
  2. M. P. Lee, B. K. McMillin, and R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32(27), 5379–5396 (1993).
    [Crossref] [PubMed]
  3. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
    [Crossref]
  4. V. Miller, M. Gamba, M. G. Mungal, and R. K. Hanson, “Toluene PLIF thermometry in supersonic flows,” presented at the 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana, 2012, paper AIAA-2012–2828.
  5. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
    [Crossref]
  6. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20(7), 1156–1166 (1981).
    [Crossref] [PubMed]
  7. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  8. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  9. Q. Wu, F. Merchant, and K. R. Castleman, Microscope Image Processing (Elsevier Academic Press, 2008).
  10. E. Berrocal, E. Kristensson, M. Richter, M. Linne, and M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16(22), 17870–17881 (2008).
    [Crossref] [PubMed]
  11. E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, and M. Linne, “Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media,” Opt. Express 19(14), 13647–13663 (2011).
    [Crossref] [PubMed]
  12. E. Kristensson, “Structured laser illumination planar imaging, SLIPI, applications for spray diagnostics,” Ph.D. dissertation (Lund University, 2012).
  13. Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
    [Crossref]
  14. K. Larsson, M. Jonsson, J. Borggren, E. Kristensson, A. Ehn, M. Aldén, and J. Bood, “Single-shot photofragment imaging by structured illumination,” Opt. Lett. 40(21), 5019–5022 (2015).
    [Crossref] [PubMed]
  15. R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
    [Crossref]
  16. R. Sánchez-González, “Advanced laser diagnostics development for the characterization of gaseous high speed flows,” PhD dissertation (Texas A&M University, 2012).
  17. A. G. Hsu, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48(22), 4414–4423 (2009).
    [Crossref] [PubMed]
  18. R. Sánchez-González, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study,” Appl. Opt. 51(9), 1216–1228 (2012).
    [Crossref] [PubMed]
  19. R. Sánchez-González, R. D. W. Bowersox, and S. W. North, “Vibrationally excited NO tagging by NO(A2∑+) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows,” Opt. Lett. 39(9), 2771–2774 (2014).
    [Crossref] [PubMed]
  20. N. J. Parziale, M. S. Smith, and E. C. Marineau, “Krypton tagging velocimetry of an underexpanded jet,” Appl. Opt. 54(16), 5094–5101 (2015).
    [Crossref] [PubMed]
  21. M. A. Mustafa and N. J. Parziale, “Simplified read schemes for krypton tagging velocimetry in N2 and air,” Opt. Lett. 43(12), 2909–2912 (2018).
    [Crossref] [PubMed]
  22. SRS., “About lock-in amplifiers,” Application Note #3. Stanford Research Systems.
  23. E. Kristensson, J. Bood, M. Alden, E. Nordström, J. Zhu, S. Huldt, P. E. Bengtsson, H. Nilsson, E. Berrocal, and A. Ehn, “Stray light suppression in spectroscopy using periodic shadowing,” Opt. Express 22(7), 7711–7721 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

2015 (2)

2014 (2)

2012 (2)

R. Sánchez-González, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study,” Appl. Opt. 51(9), 1216–1228 (2012).
[Crossref] [PubMed]

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

2004 (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1997 (2)

1996 (1)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

1993 (1)

1981 (1)

Alden, M.

Aldén, M.

Araneo, L.

Bengtsson, P. E.

Berrocal, E.

Bood, J.

Borggren, J.

Bowersox, R. D. W.

Cattolica, R.

Ehn, A.

Grisch, F.

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hanson, R. K.

Hofferth, J.

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

Hsu, A. G.

Huldt, S.

Jonsson, M.

Jönsson, J.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

Juškaitis, R.

Kim, D. Y.

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
[Crossref]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
[Crossref]

Koegl, M.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

Kristensson, E.

Larsson, K.

Lee, M. P.

Linne, M.

Manin, J.

Marineau, E. C.

McMillin, B. K.

Mishra, Y. N.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Mustafa, M. A.

Neil, M. A. A.

Nilsson, H.

Nordström, E.

North, S. W.

Parziale, N. J.

Richter, M.

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Sánchez-González, R.

Schulz, C.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
[Crossref]

Sick, V.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Smith, M. S.

Srinivasan, R.

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

A. G. Hsu, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield,” Appl. Opt. 48(22), 4414–4423 (2009).
[Crossref] [PubMed]

Thurber, M. C.

Tindall, A. J.

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

Wilson, T.

Wolfrum, J.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Zhu, J.

Zigan, L.

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

AIAA J. (1)

R. Sánchez-González, R. Srinivasan, J. Hofferth, D. Y. Kim, A. J. Tindall, R. D. W. Bowersox, and S. W. North, “Repetitively pulsed hypersonic flow apparatus for diagnostic development,” AIAA J. 50(3), 691–697 (2012).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62(3), 249–253 (1996).
[Crossref]

Exp. Fluids (1)

Y. N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, and E. Berrocal, “Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays,” Exp. Fluids 58(9), 110 (2017).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (1)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6(11), 2940 (2004).
[Crossref]

Other (5)

V. Miller, M. Gamba, M. G. Mungal, and R. K. Hanson, “Toluene PLIF thermometry in supersonic flows,” presented at the 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana, 2012, paper AIAA-2012–2828.

Q. Wu, F. Merchant, and K. R. Castleman, Microscope Image Processing (Elsevier Academic Press, 2008).

R. Sánchez-González, “Advanced laser diagnostics development for the characterization of gaseous high speed flows,” PhD dissertation (Texas A&M University, 2012).

E. Kristensson, “Structured laser illumination planar imaging, SLIPI, applications for spray diagnostics,” Ph.D. dissertation (Lund University, 2012).

SRS., “About lock-in amplifiers,” Application Note #3. Stanford Research Systems.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the NO PLIF imaging system. The laser sheet sent from above was aligned through an aluminum grid to produce a fluorescence spatial modulation.
Fig. 2
Fig. 2 Average fluorescence images of the underexpanded jet probing J = 1.5 (a) and J = 9.5 (b) separately. Experimental composite image obtained probing both rotational states simultaneously using a modulation on the low-J state excitation (c). Flow direction is from left to right.
Fig. 3
Fig. 3 Correlation of the modulation amplitude with the absolute fluorescence signal intensity.
Fig. 4
Fig. 4 Illustration of the post-processing routine used to separate the two fluorescence signals.
Fig. 5
Fig. 5 Fluorescence images, corresponding to J = 1.5 (a) and J = 9.5 (b), recovered from the experimental composite image shown in Fig. 2(c). Temperature map in Kelvin obtained by using the traditional two-line thermometry approach (c). Temperature map in Kelvin obtained using the PLIF images recovered by the present approach (d).
Fig. 6
Fig. 6 Temperature profile along the underexpanded jet centerline obtained using the suggested approach. The temperature profile resulting from traditional two-line thermometry approach is shown for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R 12 = C 12 [ 2 J ' +1 2 J '' +1 ]exp( Δ ϵ 12 kT ),