Abstract

We report the design of a chip-scale and highly efficient polarization rotator (PR) based on an asymmetric directional coupler geometry involving a horizontal slot waveguide (WG) and a strip WG on a silicon-on-calcium-fluoride (SOCF) platform for the mid-IR regime. In particular, we have optimized it for rotations of both the polarizations at the operating wavelength of 4.47 µm in two configurations, which relied on single and double-slot WG geometries. Power coupling through appropriate phase matching between the quasi-TM mode of a horizontal slot WG and the quasi-TE mode of a strip WG has been exploited for realizing polarization rotation. Numerical simulations demonstrate that achievable maximum power coupling efficiency (Cm) is as high as ~95% (with a device length of ~0.57 mm) for the single slot WG geometry and ~97% (with an even shorter device length of ~0.47 mm) for the PR based on double-slot WG geometry for both the polarizations. Both the designed PRs exhibit relatively large bandwidth of 50 nm with reasonably high Cm of ~80%. A study on fabrication tolerances show that Cm remains ~80% for variation in width Δw from -2 to +3 nm and -6 to +5 nm for single and double-slot based PRs, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides

Li-Min Chang, Lei Liu, Yuan-Hao Gong, Man-Qing Tan, Yu-De Yu, and Zhi-Yong Li
Appl. Opt. 57(4) 678-683 (2018)

Compact polarization rotator for silicon-based slot waveguide structures

Jinbiao Xiao, Yin Xu, Jiayuan Wang, and Xiaohan Sun
Appl. Opt. 53(11) 2390-2397 (2014)

Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zou, S. Chakravarty, C. J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices,” Photon. Res. 6(4), 254–276 (2018).
    [Crossref]
  2. H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
    [Crossref]
  3. R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophoton. 3(4–5), 329–341 (2014).
  4. B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
    [Crossref]
  5. B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
    [Crossref]
  6. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  7. T. Hu, B. Dong, X. Luo, T. Y. Liow, J. Song, C. Lee, and G. Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
    [Crossref]
  8. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
    [Crossref]
  9. C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
    [Crossref] [PubMed]
  10. M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
    [Crossref]
  11. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  12. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  13. B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, Colorado Springs, Colorado, 2012), p. ITu2B.5.
    [Crossref]
  14. A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and performance study of a compact SOI polarization rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
    [Crossref]
  15. S. Soudi and B. M. A. Rahman, “Design of compact polarization rotator using simple silicon nanowires,” Appl. Opt. 53(34), 8071–8077 (2014).
    [Crossref] [PubMed]
  16. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [Crossref] [PubMed]
  17. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  18. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  19. Y. Xiong, J. G. Wangüemert-Pérez, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
    [Crossref] [PubMed]
  20. M. F. O. Hameed and S. S. A. Obayya, “Design of passive polarization rotator based on silica photonic crystal fiber,” Opt. Lett. 36(16), 3133–3135 (2011).
    [Crossref] [PubMed]
  21. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  22. A. Barh, B. P. Pal, R. K. Varshney, and B. M. A. Rahman, “Design of a compact SOI polarization rotator for mid-IR application,” in 2012 5th International Conference on Computer and Devices for Communication (CODEC), (IEEE, Kolkata, India, 2012), p. 1.
  23. J. Wang, C. Lee, B. Niu, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, F. Gan, and M. Qi, “A silicon-on-insulator polarization diversity scheme in the mid-infrared,” Opt. Express 23(11), 15029–15037 (2015).
    [Crossref] [PubMed]
  24. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
    [Crossref]
  25. “Calcium Fluoride,” http://www.janis.com/Libraries/Window_Transmissions/CalciumFluoride_CaF2_TransmissionCurveDataSheet.sflb.ashx .
  26. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–83 (2003).
    [Crossref]
  27. C. W. Hsu, T. K. Chang, J. Y. Chen, and Y. C. Cheng, “8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler,” Appl. Opt. 55(12), 3313–3318 (2016).
    [Crossref] [PubMed]
  28. N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
    [Crossref]
  29. M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
    [Crossref]
  30. T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
    [Crossref]
  31. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
    [Crossref] [PubMed]
  32. A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
    [Crossref]
  33. B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
    [Crossref]
  34. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]

2018 (2)

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

Y. Zou, S. Chakravarty, C. J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices,” Photon. Res. 6(4), 254–276 (2018).
[Crossref]

2017 (4)

T. Hu, B. Dong, X. Luo, T. Y. Liow, J. Song, C. Lee, and G. Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
[Crossref]

2016 (5)

2015 (2)

J. Wang, C. Lee, B. Niu, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, F. Gan, and M. Qi, “A silicon-on-insulator polarization diversity scheme in the mid-infrared,” Opt. Express 23(11), 15029–15037 (2015).
[Crossref] [PubMed]

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

2014 (6)

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophoton. 3(4–5), 329–341 (2014).

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

S. Soudi and B. M. A. Rahman, “Design of compact polarization rotator using simple silicon nanowires,” Appl. Opt. 53(34), 8071–8077 (2014).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

2013 (3)

2011 (3)

2010 (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

2008 (1)

A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
[Crossref]

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2005 (1)

2003 (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–83 (2003).
[Crossref]

1986 (1)

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Agarwal, A.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Alasaarela, T.

Alonso-Ramos, C.

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Bai, B.

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
[Crossref]

Barh, A.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and performance study of a compact SOI polarization rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
[Crossref]

Barkai, M.

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Benedikovic, D.

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Bowers, J. E.

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Chakravarty, S.

Chang, T. K.

Cheben, P.

Chen, J. Y.

Chen, R. T.

Chen, X.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Cheng, Y. C.

Chong, H. M. H.

Chung, C. J.

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Dai, D.

Deen, M. J.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Deng, Q.

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
[Crossref]

Deutscher, G.

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Dong, B.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Fang, Q.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–83 (2003).
[Crossref]

Filimonova, N. I.

N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
[Crossref]

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–83 (2003).
[Crossref]

Gan, F.

Gardes, F. Y.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Grünbaum, E.

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Gu, T.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Guo, T.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Hameed, M. F. O.

Haus, H. A.

Hiltunen, M.

Honkanen, S.

Hsu, C. W.

Hu, J.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Hu, T.

Hu, Y.

Huang, H.

Ilyushin, V. A.

N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Karvonen, L.

Khokhar, A. Z.

Kimerling, L. C.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Koyama, F.

A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
[Crossref]

Kumari, B.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

Lee, C.

Lereah, Y.

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Li, M.

Li, W.

Li, Y.

Lin, H.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Liow, T. Y.

Littlejohns, C. G.

C. Alonso-Ramos, M. Nedeljkovic, D. Benedikovic, J. S. Penadés, C. G. Littlejohns, A. Z. Khokhar, D. Pérez-Galacho, L. Vivien, P. Cheben, and G. Z. Mashanovich, “Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation,” Opt. Lett. 41(18), 4324–4327 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Lo, G. Q.

Loncar, M.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophoton. 3(4–5), 329–341 (2014).

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Luo, X.

Luo, Z.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Mashanovich, G. Z.

Matsutani, A.

A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
[Crossref]

Mitchell, C. J.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Nedeljkovic, M.

Niu, B.

Obayya, S. S. A.

Ohtsuki, H.

A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
[Crossref]

Pal, B. P.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and performance study of a compact SOI polarization rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
[Crossref]

Penades, J. S.

Penadés, J. S.

Pérez-Galacho, D.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Rahman, B. M. A.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Reed, G. T.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Reynolds, S. A.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Säynätjoki, A.

Schmid, J. H.

Selvaganapathy, P. R.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Shankar, R.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophoton. 3(4–5), 329–341 (2014).

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Sheng, Z.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Song, J.

Soudi, S.

Stankovic, S.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Tervonen, A.

Thomson, D. J.

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
[Crossref]

Tu, X.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Varshney, R. K.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

A. Barh, B. M. A. Rahman, R. K. Varshney, and B. P. Pal, “Design and performance study of a compact SOI polarization rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
[Crossref]

Velichko, A. A.

N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
[Crossref]

Vivien, L.

Wada, K.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

Wang, J.

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Wang, X.

Wangüemert-Pérez, J. G.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
[Crossref] [PubMed]

Wu, A.

Wu, H.

Xiong, Y.

Xu, C.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Xu, D. X.

Xu, X.

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Ye, W. N.

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhang, H.

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Zhang, X.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhou, Z.

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
[Crossref]

Zou, S.

Zou, Y.

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

IEEE Photonics J. (1)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn pin photodetector for SWIR detection,” IEEE Photonics J. 8(5), 1–6 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photonics Technol. Lett. 29(7), 599–602 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. A (1)

T. Guo, M. J. Deen, C. Xu, Q. Fang, P. R. Selvaganapathy, and H. Zhang, “Observation of ultraslow stress release in silicon nitride films on CaF2,” J. Vac. Sci. Technol. A 33(4), 041515 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Matsutani, H. Ohtsuki, and F. Koyama, “Generation of solid-source H2O plasma and its application to dry etching of CaF2,” Jpn. J. Appl. Phys. 47(66S), 5113–5115 (2008).
[Crossref]

Nanophoton. (2)

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophoton. 7(2), 393–420 (2017).
[Crossref]

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophoton. 3(4–5), 329–341 (2014).

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (1)

Optoelectron. Instrum. Data Process. (1)

N. I. Filimonova, V. A. Ilyushin, and A. A. Velichko, “Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si (100) substrate for monolithic photoreceivers,” Optoelectron. Instrum. Data Process. 53(3), 303–308 (2017).
[Crossref]

Photon. Res. (2)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–83 (2003).
[Crossref]

Sens. Actuators B Chem. (2)

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

Thin Solid Films (1)

M. Barkai, Y. Lereah, E. Grünbaum, and G. Deutscher, “Epitaxial growth of silicon and germanium films on CaF2/Si,” Thin Solid Films 139(3), 287–297 (1986).
[Crossref]

Other (3)

“Calcium Fluoride,” http://www.janis.com/Libraries/Window_Transmissions/CalciumFluoride_CaF2_TransmissionCurveDataSheet.sflb.ashx .

B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, Colorado Springs, Colorado, 2012), p. ITu2B.5.
[Crossref]

A. Barh, B. P. Pal, R. K. Varshney, and B. M. A. Rahman, “Design of a compact SOI polarization rotator for mid-IR application,” in 2012 5th International Conference on Computer and Devices for Communication (CODEC), (IEEE, Kolkata, India, 2012), p. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Schematic cross-sectional view of the proposed PR, (b) its 3D view.
Fig. 2
Fig. 2 Effective refractive indices of the fundamental TE and TM modes of isolated horizontal single slot WG and isolated strip WG as a function of their widths. Here, h = 0.3 µm, h1 = 0.8 µm, and t = 0.02 µm.
Fig. 3
Fig. 3 Effective refractive indices of the first and the second supermodes as a function of strip WG width (w1) for three different values of S = 0.45 µm, 0.5 µm, and 0.55 µm.
Fig. 4
Fig. 4 Variation of the modal hybridness with strip WG width (w1) for three different values of S = 0.45 µm, 0.5 µm, and 0.55 µm; (a) for the first supermode (b) for the second supermode.
Fig. 5
Fig. 5 The color and surface plots of field distributions of the Hx and Hy components of the first and the second supermodes with WG dimensions: w = 0.95 µm, w1 = 1.148 µm, h = 0.3 µm, h1 = 0.8 µm, t = 0.02 µm, and S = 0.5 µm.
Fig. 6
Fig. 6 The light propagation in the designed PR based on single slot WG geometry when (a) TM mode is input in the slot WG (b) TE mode is input in the strip WG.
Fig. 7
Fig. 7 The normalized power variations as a function of the device length of TM mode in the slot WG (red curve) and TE mode in the strip WG (black curve).
Fig. 8
Fig. 8 (a) Schematic cross-sectional view of the proposed PR based on double-slot WG geometry, (b) its 3D view.
Fig. 9
Fig. 9 The color and surface plots of field distributions of the Hx and Hy components of the first and the second supermodes of double-slot WG-based PR.
Fig. 10
Fig. 10 The normalized power variations of TM mode in the slot WG (red curve) and TE mode in the strip WG (black curve) as a function of the device length for PR based on double-slot WG geometry.
Fig. 11
Fig. 11 The light propagation in the designed PR based on double-slot WG geometry with TM mode in the slot WG and TE mode in the strip WG, (a) when TM is input in the slot WG (b) when TE is input in the strip WG. Here, w = 0.95 µm, w1 = 1.221 µm, h1 = 0.8 µm, h2 = 0.35 µm, h3 = 0.05 µm, and t = 0.02 µm.
Fig. 12
Fig. 12 Variations of maximum power coupling efficiency (Cm) with wavelength for both the PRs based on single and double-slot WG geometries. Inset shows the mode profiles of the Hy component of the first supermode of double-slot WG-based PR at two sample values of λ = 4.45 µm and 4.50 µm.
Fig. 13
Fig. 13 Variations of confinement factor of cover and substrate regions of double-slot WG-based PR with wavelength for the (a) first supermode (b) second supermode.
Fig. 14
Fig. 14 Fabrication process flow: (a) Grow Si and CaF2 layers epitaxially on a CaF2 substrate and then spin-coat it with the resist; (b) pattern the resist through E-beam lithography; (c) dry etch Si and CaF2 up to the substrate; (d) again spin-coat with the resist; (e) pattern the resist; (f) dry etch Si and CaF2 which are unrelated to the device and remove the resist.
Fig. 15
Fig. 15 Schematic view of the fabrication imperfection Δw for widths of WGs and separation.
Fig. 16
Fig. 16 Dependence of maximum power coupling efficiency (Cm) on WGs widths variation Δw for both the PRs based on single as well as double-slot WG geometries.
Fig. 17
Fig. 17 Dependence of maximum power coupling efficiency (Cm) on slot thickness variation Δt for the double-slot based PR.

Tables (3)

Tables Icon

Table 1 Values of phase matching width w1, Lc and Cm for different S values at λ = 4.47 µm with WG dimensions: w = 0.95 µm, h = 0.3 µm, h1 = 0.8 µm, and t = 0.02 µm for PR based on single slot WG geometry

Tables Icon

Table 2 Values of phase matching width w1, Lc and Cm for different S values at λ = 4.47 µm with WG dimensions: w = 0.95 µm, h1 = 0.8 µm, h2 = 0.35 µm, h3 = 0.05 µm, and t = 0.02 µm for PR based on double-slot WG geometry

Tables Icon

Table 3 Comparison of proposed double-slot based PR with earlier reported DCs based PRs