Abstract

In this paper, a dual-core liquid filled photonic crystal fiber coupler (PCFC) with rectangular (RPCFC) and hexagonal (HPCFC) geometry is presented from the 1200 to 1800 nm wavelength range. In the proposed design, super flint (SF10) glass is used as the background material and water, chloroform, and benzene are infiltrated in the dual-core, independently. The properties of the guided modes are studied by the finite difference time domain (FDTD) method with a perfectly matched layer (PML) boundary condition. Results reveal very small confinement loss with a low coupling length and birefringence for the wide wavelength range. At the 1.55 μm wavelength, RPCFC shows 0.000318, 0.000358, and 0.000379 m coupling lengths for the water, chloroform, and benzene filled dual-core, respectively. Additionally, the confinement loss of 1.57×10−7, 1.22×10−7, and 1.05×10−7 db/km is achieved through RPCFC. Moreover, both the PCFCs present a small polarization variation. Therefore, the proposed PCFC models can be used in optical communication systems, and polarization-independent and high temperature-sensitive applications areas.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler

Shuqin Lou, Zunwei Tang, and Liwen Wang
Appl. Opt. 50(14) 2016-2023 (2011)

The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers

Shailendra K. Varshney, Nikolaos J. Florous, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 14(5) 1982-1995 (2006)

Coupling characteristics of dual-core photonic crystal fiber couplers

Kunimasa Saitoh, Yuichiro Sato, and Masanori Koshiba
Opt. Express 11(24) 3188-3195 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  2. A. Bajarklev, J. Broeng, and A. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
    [Crossref]
  3. K. R. Priya, A. S. Raja, and D. S. Sundar, “Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics,” J. Opt. Technol. 83, 569–573 (2016).
    [Crossref]
  4. S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosens. Res. 10, 20–26 (2016).
  5. H. Xuan, J. Ma, W. Jin, and W. Jin, “Polarization converters in highly birefringent microfibers,” Opt. Express 22, 3648–3660 (2014).
    [Crossref] [PubMed]
  6. J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [Crossref]
  7. K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber Commun. Res. 2, 226–254 (2005).
    [Crossref]
  8. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
    [Crossref]
  9. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [Crossref] [PubMed]
  10. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004).
    [Crossref] [PubMed]
  11. S. K. Varshney, N. J. Florous, K. Saitoh, and M. Koshiba, “The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers,” Opt. Express 14, 1982–1995 (2006).
    [Crossref] [PubMed]
  12. M. Steel, T. White, C. M. De Sterke, R. McPhedran, and L. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [Crossref]
  13. G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.
  14. B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
    [Crossref]
  15. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
    [Crossref]
  16. S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
    [Crossref]
  17. C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
    [Crossref]
  18. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  19. R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
    [Crossref]
  20. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274 (2005).
    [Crossref] [PubMed]
  21. H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).
  22. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [Crossref] [PubMed]
  23. G. K. G. Jianfei, “Coupling characteristics of dual-core photonic crystal fiber with rectangular lattice,” Chin. J. Lasers 3, 025 (2013).
  24. M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
    [Crossref]
  25. F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).
  26. F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
    [Crossref]
  27. S. Kim, Y. S. Lee, C. G. Lee, Y. Jung, and K. Oh, “Hybrid square-lattice photonic crystal fiber with broadband single-mode operation, high birefringence, and normal dispersion,” J. Opt. Soc. Korea 19, 449–455 (2015).
    [Crossref]
  28. K. R. Khan and T. X. Wu, “Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler,” IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008).
    [Crossref]
  29. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [Crossref]
  30. X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
    [Crossref]
  31. G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
    [Crossref]
  32. T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

2018 (1)

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

2017 (1)

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

2016 (5)

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
[Crossref]

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosens. Res. 10, 20–26 (2016).

G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
[Crossref]

K. R. Priya, A. S. Raja, and D. S. Sundar, “Design of a dual-core liquid-filled photonic crystal fiber coupler and analysis of its optical characteristics,” J. Opt. Technol. 83, 569–573 (2016).
[Crossref]

2015 (1)

2014 (2)

H. Xuan, J. Ma, W. Jin, and W. Jin, “Polarization converters in highly birefringent microfibers,” Opt. Express 22, 3648–3660 (2014).
[Crossref] [PubMed]

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

2013 (1)

G. K. G. Jianfei, “Coupling characteristics of dual-core photonic crystal fiber with rectangular lattice,” Chin. J. Lasers 3, 025 (2013).

2012 (1)

F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).

2011 (1)

2010 (1)

R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[Crossref]

2009 (2)

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

2008 (1)

K. R. Khan and T. X. Wu, “Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler,” IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008).
[Crossref]

2006 (2)

2005 (3)

2004 (1)

2003 (1)

2001 (1)

2000 (2)

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

1997 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Ahmed, K.

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosens. Res. 10, 20–26 (2016).

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Arriaga, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Asaduzzaman, S.

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosens. Res. 10, 20–26 (2016).

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Bahar, A. N.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Bajarklev, A.

A. Bajarklev, J. Broeng, and A. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[Crossref]

Bang, O.

Begum, F.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Birks, T.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

Birks, T. A.

Bjarklev, A.

Botten, L.

Broeng, J.

A. Bajarklev, J. Broeng, and A. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[Crossref]

Cai, W.

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

Chowdhury, S.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

De Sterke, C. M.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Ebnali-Heidari, M.

F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).

Florous, N.

Florous, N. J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Greenaway, A.

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

Hai, N. H.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Hansen, K. P.

K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber Commun. Res. 2, 226–254 (2005).
[Crossref]

He, K.-P.

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

Hu, Z.

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

Islam, M. I.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Islam, M. S.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Jianfei, G. K. G.

G. K. G. Jianfei, “Coupling characteristics of dual-core photonic crystal fiber with rectangular lattice,” Chin. J. Lasers 3, 025 (2013).

Jiang, H.

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

Jin, W.

Jung, Y.

Kaijage, S.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Kakarantzas, G.

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

Khan, K. R.

K. R. Khan and T. X. Wu, “Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler,” IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008).
[Crossref]

Kim, S.

Kinjo, T.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Knight, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

Knight, J. C.

Koohi-Kamali, F.

F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).

Koshiba, M.

Laegsgaard, J.

Lee, C. G.

Lee, Y. S.

Li, X.-Y.

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

Lian, Z.

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

Lou, S.

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
[Crossref]

Luke, S.

S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
[Crossref]

Ma, J.

Mangan, B.

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

McPhedran, R.

Miyagi, K.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Moravvej-Farshi, M. K.

F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).

Namihira, Y.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Nithyanandan, K.

R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[Crossref]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Ortigosa-Blanch, A.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Paul, B. K.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Pillai, V. M.

S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
[Crossref]

Porsezian, K.

R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[Crossref]

Priya, K. R.

Raja, A. S.

Raja, R. V. J.

R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[Crossref]

Razzak, S. A.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Russell, P. St. J.

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[Crossref] [PubMed]

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

Saitoh, K.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

Sato, Y.

Sen, S.

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Steel, M.

Sudheer, S.

S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
[Crossref]

Sun, B.

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

Sundar, D. S.

Tang, Z.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Varshney, S. K.

Wadsworth, W.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

Wang, E.

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

Wang, G.

G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
[Crossref]

Wang, L.

Wang, X.

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

Wang, Z.

G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
[Crossref]

White, T.

Wu, T. X.

K. R. Khan and T. X. Wu, “Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler,” IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008).
[Crossref]

Xie, K.

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

Xu, X.

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

Xuan, H.

Yu, F.

G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
[Crossref]

Yu, Y.-Y.

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

Zhang, C.

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

Zhang, Z.

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

Zhao, T.

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

Zhou, M.

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

Zou, N.

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Appl. Opt. (1)

Chin. J. Lasers (1)

G. K. G. Jianfei, “Coupling characteristics of dual-core photonic crystal fiber with rectangular lattice,” Chin. J. Lasers 3, 025 (2013).

Electron. Lett. (1)

B. Mangan, J. Knight, T. Birks, P. St. J. Russell, and A. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett. 36, 1358–1359 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. R. Khan and T. X. Wu, “Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler,” IEEE J. Sel. Top. Quantum Electron. 14, 752–757 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[Crossref]

IEEE Photonics J. (2)

T. Zhao, S. Lou, X. Wang, M. Zhou, and Z. Lian, “Ultrabroadband polarization-insensitive coupler based on dual-core photonic crystal fiber,” IEEE Photonics J. 9, 1–10 (2017).

H. Jiang, E. Wang, K. Xie, and Z. Hu, “Dual-core photonic crystal fiber for use in fiber filters,” IEEE Photonics J. 8, 1–8 (2016).

Int. J. Opt. Photonics (1)

F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration,” Int. J. Opt. Photonics 6, 83–96 (2012).

J. Lightwave Technol. (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[Crossref]

J. Opt. Fiber Commun. Res. (1)

K. P. Hansen, “Introduction to nonlinear photonic crystal fibers,” J. Opt. Fiber Commun. Res. 2, 226–254 (2005).
[Crossref]

J. Opt. Soc. Korea (1)

J. Opt. Technol. (1)

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Opt. Eng. (1)

G. Wang, Z. Wang, and F. Yu, “Design of single-polarization single-mode coupler based on dual-core photonic crystal fiber,” Opt. Eng. 55, 027101 (2016).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

F. Begum, Y. Namihira, S. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, “Novel broadband dispersion compensating photonic crystal fibers: Applications in high-speed transmission systems,” Opt. Laser Technol. 41, 679–686 (2009).
[Crossref]

Opt. Lett. (3)

Optik (2)

S. Luke, S. Sudheer, and V. M. Pillai, “Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss,” Optik 127, 11138–11142 (2016).
[Crossref]

X.-Y. Li, B. Sun, Y.-Y. Yu, and K.-P. He, “Bending dual-core photonic crystal fiber coupler,” Optik 125, 6478–6482 (2014).
[Crossref]

Phys. Rev. A (1)

R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Sens. Biosens. Res. (1)

S. Asaduzzaman and K. Ahmed, “Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,” Sens. Biosens. Res. 10, 20–26 (2016).

Sensors (1)

C. Zhang, Z. Zhang, X. Xu, and W. Cai, “Thermally optimized polarization-maintaining photonic crystal fiber and its fog application,” Sensors 18, 567 (2018).
[Crossref]

Other (3)

G. Kakarantzas, B. Mangan, T. Birks, J. Knight, and P. St. J. Russell, “Directional coupling in a twin core photonic crystal fiber using heat treatment,” in Lasers and Electro-Optics, 2001. CLEO’01 (IEEE, 2001), pp. 599–600.

A. Bajarklev, J. Broeng, and A. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[Crossref]

M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, “Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis,” Alex. Eng. J., in press (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Design layout of rectangular and hexagonal PCFC (a) RPCFC, and (b) HPCFC.
Fig. 2
Fig. 2 Electric field confinement of rectangular and hexagonal PCFC (a) RPCFC (even and odd mode, respectively), and (b) HPCFC (even and odd mode, respectively).
Fig. 3
Fig. 3 Variations of effective refractive index (real) with respect to wavelength for rectangular and hexagonal geometry with x-polarization (even mode). Solid line presents rectangular where dashed line show hexagonal.
Fig. 4
Fig. 4 Variations of effective refractive index (real) with respect to wavelength for rectangular and hexagonal geometry with y-polarization (even mode). Solid line presents rectangular where dashed line show hexagonal.
Fig. 5
Fig. 5 Variations of propagation constant (x-polarization) with respect to wavelength for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.
Fig. 6
Fig. 6 Variations of coupling length (x-polarization) with respect to wavelength for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.
Fig. 7
Fig. 7 Variations of confinement loss (x-polarization) with respect to wavelength for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.
Fig. 8
Fig. 8 Variations of birefringence with respect to wavelength for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.
Fig. 9
Fig. 9 Variations of dispersion (x-polarization) with respect to wavelength for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.
Fig. 10
Fig. 10 Variations of dispersion (x-polarization) with respect to wavelength (1500 nm to 1600 nm) for rectangular and hexagonal geometry. Solid line presents rectangular where dashed line show hexagonal.

Tables (2)

Tables Icon

Table 1 Comparison of Different Guiding Properties of the Proposed RPCFC and HPCFC at 1.55 μm Wavelength

Tables Icon

Table 2 Coupling Length Comparison of the Proposed PCFCs with the Existing Literature at 1.55 μm Wavelength

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

× ( [ s ] 1 × E ) k 0 2 n 2 [ s ] E = 0
β = n eff 2 π λ
D = λ c d 2 d λ 2 n eff
CL = 8.686 × 10 3 ( 2 π / λ ) Im ( n eff ) dB / km
L c = λ / ( 2 | n even n odd | )
B = | n eff x n eff y |

Metrics