Abstract

We study fluorescence enhancement for a dipole emitter placed between a tip and different dielectric substrates. Resonant behavior is observed as a function of tip-substrate distance for a silver tip placed above a glass substrate and displays a strong dependence on the radius of the curvature of the tip. By choosing appropriate sizes for the tip radius and the tip-substrate gap to optimize the competition between field enhancement and fluorescence quenching, we have found fluorescence enhancement exceeding three orders of magnitude can be achieved. The enhancement can be further improved by matching the silver tip with an appropriate dielectric substrate to resonantly excite gap plasmons. This is verified by comparing the matched silver tip-TiO2 substrate pairing with non-matched tip-dielectric substrate pairings. Compared with the large fluorescence enhancement observed in the case of a silver tip above a glass substrate, modest enhancement is obtained for a silicon tip and can be further improved by using a high dielectric material as the substrate. The optimal tip-enhanced fluorescence obtained in a silver tip-TiO2 substrate pairing may be useful in obtaining efficient fluorescence signal in the same setup used for tip-enhanced Raman spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter

Lishi Jiao, Mingyue Liu, Monalisa Garai, Nengyue Gao, Jing Yang, Qing-Hua Xu, and Minghui Hong
Appl. Opt. 55(31) 8722-8726 (2016)

Tip-enhanced photoluminescence spectroscopy of monolayer MoS2

Lingyan Meng and Mengtao Sun
Photon. Res. 5(6) 745-749 (2017)

Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration

Lingyan Meng, Tengxiang Huang, Xiang Wang, Shu Chen, Zhilin Yang, and Bin Ren
Opt. Express 23(11) 13804-13813 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
    [Crossref] [PubMed]
  2. X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
    [Crossref] [PubMed]
  3. E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
    [Crossref] [PubMed]
  4. S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
    [Crossref] [PubMed]
  5. P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
    [Crossref] [PubMed]
  6. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [Crossref]
  7. H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
    [Crossref]
  8. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
    [Crossref] [PubMed]
  9. F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
    [Crossref]
  10. Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
    [Crossref] [PubMed]
  11. H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
    [Crossref]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  13. L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
    [Crossref] [PubMed]
  14. B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
    [Crossref]
  15. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
    [Crossref] [PubMed]
  16. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21(21), 25271–25276 (2013).
    [Crossref] [PubMed]
  17. S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
    [Crossref]
  18. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  19. R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
    [Crossref]
  20. L. Shi, E. Xifré-Pérez, F. J. García de Abajo, and F. Meseguer, “Looking through the mirror: optical microcavity-mirror image photonic interaction,” Opt. Express 20(10), 11247–11255 (2012).
    [Crossref] [PubMed]
  21. J. L. Bohn, D. J. Nesbitt, and A. Gallagher, “Field enhancement in apertureless near-field scanning optical microscopy,” J. Opt. Soc. Am. A 18(12), 2998–3006 (2001).
    [Crossref] [PubMed]
  22. A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
    [Crossref]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  24. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  25. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
    [Crossref]
  26. R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
    [Crossref] [PubMed]
  27. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
    [Crossref] [PubMed]
  28. R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
    [Crossref]
  29. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
    [Crossref] [PubMed]
  30. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  31. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
    [Crossref] [PubMed]
  32. J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).
  33. D. McArthur and F. Papoff, “Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet,” Sci. Rep. 7(1), 14191 (2017).
    [Crossref] [PubMed]
  34. H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trac. Mod. Phys. 111, 1–133 (1988).
    [Crossref]
  35. H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
    [Crossref]
  36. M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
    [Crossref]
  37. J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
    [Crossref] [PubMed]
  38. R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
    [Crossref] [PubMed]
  39. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref] [PubMed]
  40. Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
    [Crossref]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  42. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  43. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B Condens. Matter 27(2), 985–1009 (1983).
    [Crossref]
  44. J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41(6), 416–419 (1951).
    [Crossref]

2017 (5)

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

D. McArthur and F. Papoff, “Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet,” Sci. Rep. 7(1), 14191 (2017).
[Crossref] [PubMed]

2016 (7)

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).

2015 (2)

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

2014 (1)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

2013 (4)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21(21), 25271–25276 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
[Crossref]

2009 (3)

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
[Crossref]

H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
[Crossref]

2007 (2)

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
[Crossref]

2006 (3)

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

2005 (2)

F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
[Crossref]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

2004 (1)

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
[Crossref]

1999 (1)

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

1995 (1)

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

1988 (1)

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trac. Mod. Phys. 111, 1–133 (1988).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B Condens. Matter 27(2), 985–1009 (1983).
[Crossref]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1951 (1)

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Aizpurua, J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Anselmetti, D.

H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
[Crossref]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B Condens. Matter 27(2), 985–1009 (1983).
[Crossref]

Baumberg, J. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Becker, S. F.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Bedu, F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Begou, T.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Belacel, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Berthelot, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

Bidault, S.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bigourdan, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Bohn, J. L.

Bonod, N.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Carminati, R.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Cassidy, P.

M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
[Crossref]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Chapman, C. T.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Chen, J.

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Chiang, N.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciraci, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Coca-López, N.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Colanduoni, J.

J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
[Crossref] [PubMed]

Coolen, L.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Craighead, H. G.

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

DeVore, J. R.

Domke, K. F.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Dubertret, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

Duyne, R. P. V.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Ertl, G.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Esmann, M.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Esteban, R.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
[Crossref]

Evlyukhin, A. B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Festy, F.

F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
[Crossref]

Frey, H. G.

H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
[Crossref]

Gallagher, A.

J. L. Bohn, D. J. Nesbitt, and A. Gallagher, “Field enhancement in apertureless near-field scanning optical microscopy,” J. Opt. Soc. Am. A 18(12), 2998–3006 (2001).
[Crossref] [PubMed]

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
[Crossref]

García de Abajo, F. J.

García-Parajó, M. F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Gerton, J. M.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Goubert, G.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Greffet, J. J.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Gross, P.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Habert, B.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Hamann, H. F.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
[Crossref]

Hartschuh, A.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Henkel, C.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Henry, A. I.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Hersam, M. C.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Huang, F. M.

F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
[Crossref]

Huang, J. N.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hugonin, J. P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Ichimura, T.

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

Janik, J.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Javaux, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Jiang, N.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kawata, S.

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

Kazemi-Zanjani, N.

Kern, K.

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

Kumamoto, Y.

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

Lafosse, X.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

Lessard, G. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Leung, P. T.

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Lienau, C.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Lumeau, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Ma, Z.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Maitre, A.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Marquier, F.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

McAnally, M. O.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

McArthur, D.

D. McArthur and F. Papoff, “Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet,” Sci. Rep. 7(1), 14191 (2017).
[Crossref] [PubMed]

Meng, L.

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

Meseguer, F.

Michaelis de Vasconcellos, S.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

Mivelle, M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Nesbitt, D. J.

J. L. Bohn, D. J. Nesbitt, and A. Gallagher, “Field enhancement in apertureless near-field scanning optical microscopy,” J. Opt. Soc. Am. A 18(12), 2998–3006 (2001).
[Crossref] [PubMed]

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
[Crossref]

Nikolov, D.

J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
[Crossref] [PubMed]

Nordlander, P.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Ozerov, I.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Papoff, F.

D. McArthur and F. Papoff, “Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet,” Sci. Rep. 7(1), 14191 (2017).
[Crossref] [PubMed]

Park, N.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Paskarbeit, J.

H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
[Crossref]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Pettinger, B.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Pozzi, E. A.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Proust, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quake, S. R.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Raether, H.

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trac. Mod. Phys. 111, 1–133 (1988).
[Crossref]

Regmi, R.

J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Richards, D.

F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
[Crossref]

Rigneault, H.

J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Schatz, G. C.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Schuster, R.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Schwob, C.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Seideman, T.

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

Senellart, P.

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

Sheng, S.

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

Shi, L.

Shi, X.

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B Condens. Matter 27(2), 985–1009 (1983).
[Crossref]

Sun, M.

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

Taguchi, A.

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Vedraine, S.

Velasco, M. G.

M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
[Crossref]

Verma, P.

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

Vigoureux, J. M.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Vogelgesang, R.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
[Crossref]

Wade, L. A.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Wang, R.

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

Webb, W. W.

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

Wenger, J.

J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Winkler, P. M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

Xifré-Pérez, E.

Xu, H.

J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
[Crossref] [PubMed]

Xu, H. X.

Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
[Crossref]

Xu, H. Z.

M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
[Crossref]

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Yang, Z.

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

Yang, Z. L.

Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
[Crossref]

Yoo, K.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, D.

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

Zhang, L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

Zhu, P. S.

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. S. Kivshar, and B. N. Chichkov, “Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles,” ACS Photonics 2(10), 1423–1428 (2015).
[Crossref]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Anal. Chem. (1)

Z. Zhang, S. Sheng, R. Wang, and M. Sun, “Tip-enhanced Raman spectroscopy,” Anal. Chem. 88(19), 9328–9346 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76(14), 1953–1955 (2000).
[Crossref]

F. M. Huang, F. Festy, and D. Richards, “Tip-enhanced fluorescence imaging of quantum dots,” Appl. Phys. Lett. 87(18), 183101 (2005).
[Crossref]

H. G. Frey, J. Paskarbeit, and D. Anselmetti, “Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment,” Appl. Phys. Lett. 94(24), 241116 (2009).
[Crossref]

Chem. Rev. (4)

X. Shi, N. Coca-López, J. Janik, and A. Hartschuh, “Advances in tip-enhanced near-field Raman microscopy using nanoantennas,” Chem. Rev. 117(7), 4945–4960 (2017).
[Crossref] [PubMed]

E. A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. T. Chapman, M. O. McAnally, A. I. Henry, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. V. Duyne, “Ultrahigh-vacuum tip-enhanced Raman spectroscopy,” Chem. Rev. 117(7), 4961–4982 (2017).
[Crossref] [PubMed]

S. Kawata, T. Ichimura, A. Taguchi, and Y. Kumamoto, “Nano-Raman scattering microscopy: resolution and enhancement,” Chem. Rev. 117(7), 4983–5001 (2017).
[Crossref] [PubMed]

P. Verma, “Tip-enhanced Raman spectroscopy: technique and recent advances,” Chem. Rev. 117(9), 6447–6466 (2017).
[Crossref] [PubMed]

J. Opt. (1)

J. Wenger, R. Regmi, and H. Rigneault, “Plasmonic-enhanced fluorescence detection of single molecules at high concentrations,” J. Opt. 18, 063003 (2016).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Raman Spectrosc. (1)

Z. L. Yang, J. Aizpurua, and H. X. Xu, “Electromagnetic field enhancement in TERS configurations,” J. Raman Spectrosc. 40(10), 1343–1348 (2009).
[Crossref]

Nano Lett. (2)

C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13(4), 1516–1521 (2013).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Nature (1)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498(7452), 82–86 (2013).
[Crossref] [PubMed]

Opt. Commun. (3)

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

H. Z. Xu, P. S. Zhu, H. G. Craighead, and W. W. Webb, “Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling,” Opt. Commun. 282(7), 1467–1471 (2009).
[Crossref]

M. G. Velasco, P. Cassidy, and H. Z. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun. 284(19), 4805–4809 (2011).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B Condens. Matter 27(2), 985–1009 (1983).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

B. Pettinger, K. F. Domke, D. Zhang, R. Schuster, and G. Ertl, “Direct monitoring of plasmon resonances in a tip-surface gap of varying width,” Phys. Rev. B Condens. Matter Mater. Phys. 76(11), 113409 (2007).
[Crossref]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B Condens. Matter Mater. Phys. 75(19), 195410 (2007).
[Crossref]

Phys. Rev. Lett. (7)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75(26), 4772–4775 (1995).
[Crossref] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[Crossref] [PubMed]

Plasmonics (1)

J. Colanduoni, D. Nikolov, and H. Xu, “Multi-mode hybrid plasmonic waveguides with enhanced confinement and propagation,” Plasmonics 11(3), 763–769 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

D. McArthur and F. Papoff, “Gap enhanced fluorescence as a road map for the detection of very weakly fluorescent emitters from visible to ultraviolet,” Sci. Rep. 7(1), 14191 (2017).
[Crossref] [PubMed]

L. Meng, M. Sun, J. Chen, and Z. Yang, “A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy,” Sci. Rep. 6(1), 19558 (2016).
[Crossref] [PubMed]

Springer Trac. Mod. Phys. (1)

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trac. Mod. Phys. 111, 1–133 (1988).
[Crossref]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic illustration of the tip-enhanced fluorescence (TEF) setup. A silver tip of conical shape is positioned directly above a dipole molecule situated 0.5 nm above a glass substrate. Linearly polarized light is incident from the side with an angle of incidence 40° and the polarization is in the plane of incidence.
Fig. 2
Fig. 2 Finite element simulation of fluorescence enhancement for a 20-nm-radius silver tip above a glass substrate as shown in Fig. 1. (a) Distribution of the normalized electric field strength |E/E0| and (b) magnitude of the time-averaged Poynting vector normalized by its value at the location of the molecule on a logarithmic scale for a tip-substrate distance of 2.2 nm. (c) Field enhancement factor, (d) total (solid lines) and nonradiative (dashed lines) decay rates normalized by the spontaneous decay rate of the molecule in free space, (e) quantum yield, and (f) fluorescence enhancement factor as a function of tip-substrate distance.
Fig. 3
Fig. 3 Fluorescence enhancement for silver tips of different radii above a glass substrate as shown in Fig. 1. (a) Field enhancement factors, (b) quantum yields, and (c) fluorescence enhancement factors as a function of tip-substrate distance for three different tip radii: 10 nm (solid lines), 20 nm (dashed lines), and 50 nm (dotted lines).
Fig. 4
Fig. 4 Finite element simulation of field enhancement and radiation pattern for a 20-nm-radius silver tip above a TiO2 substrate. Distribution of the normalized electric field strength for a 20-nm-radius silver tip placed: (a) 1.2 nm and (b) 10 nm above a TiO2 substrate. Magnitude of time-averaged Poynting vector normalized by its value at the location of the molecule on a logarithmic scale for a 20-nm-radius silver tip placed: (c) 1.2 nm and (d) 10 nm above a TiO2 substrate.
Fig. 5
Fig. 5 Fluorescence enhancement for a 20-nm-radius silver tip above glass and TiO2 substrates. (a) Field enhancement factors, (b) quantum yields, and (c) fluorescence enhancement factors as a function of the tip-substrate distance for a 20-nm-radius silver tip placed above glass (solid lines) and TiO2 (dashed lines) substrates.
Fig. 6
Fig. 6 Fluorescence enhancement for a 20-nm-radius silver tip and a 20-nm-radius fictitious metal tip above a TiO2 substrate. The latter material is chosen to match the dielectric constant of TiO2 perfectly. (a) Field enhancement factors, (b) quantum yields, and (c) fluorescence enhancement factors as a function of the tip-substrate distance for the silver tip (solid lines) and the fictitious metal tip (dashed lines).
Fig. 7
Fig. 7 Finite element simulation of field enhancement and radiation pattern for a 20-nm-radius silicon tip above glass and TiO2 substrates. Distribution of the normalized electric field strength |E/E0| for a 20-nm-radius silicon tip placed: (a) 3.0 nm above a glass substrate and (b) 1.8 nm above a TiO2 substrate. Magnitude of time-averaged Poynting vector normalized by its value at the location of the molecule on a logarithmic scale for a 20-nm-radius silicon tip placed: (c) 3.0 nm above a glass substrate and (d) 1.8 nm above a TiO2 substrate.
Fig. 8
Fig. 8 Fluorescence enhancement for a 20-nm-radius silicon tip above glass and TiO2 substrates. (a) Field enhancement factors, (b) quantum yields, and (c) fluorescence enhancement factors as a function of the tip-substrate distance for a 20-nm-radius silicon tip placed above glass (solid lines) and TiO2 (dashed lines) substrates.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε 1 + ε 2 =0.
f= | E z | 2 d 3 r / | E 0 | 2 d 3 r ,
γ= πω p 2 3 ε 0 ρ( r 0 ,ω),
ρ( r 0 ,ω)= 6ω π c 2 [ u Im{ G ( r 0 , r 0 ) } u ]= 6 ε 0 πωp Im[ u E m ( r 0 ) ],
γ γ 0 = 6π ε 0 c 3 ω 3 p Im[ u E m ( r 0 ) ].
γ γ 0 = P P 0 ,
q a = γ r /γ =1 γ nr /γ ,
γ nr γ 0 = 1 2 P 0 V Re{ J ( r ) E m * ( r ) } d 3 r ,
FEF= γ em / γ em 0 =f q a .

Metrics