Abstract

We report, for the first time, a single state polarization (TE) dual-band grating fiber-chip coupler on a 700 nm thick silicon nitride platform that couples to both O and C band channels. Dual-band coupling with a single grating coupler is achieved using cross mode k-space equalization. By phase matching the first-order vertical TE01 mode and the fundamental TE00 mode in two distinct bands, we observe simultaneous co-directional dual-band coupling to a single waveguide. Experimental peak efficiency per coupler is measured to be −7.3 dB in the O-band and −8.2 dB in the C-band and the combined 1 dB bandwidth is observed to be 82 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler

Ming Dai, Leilei Ma, Yelong Xu, Minghui Lu, Xiaoping Liu, and Yanfeng Chen
Opt. Express 23(2) 1691-1698 (2015)

Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band

Daniel Benedikovic, Carlos Alonso-Ramos, Pavel Cheben, Jens H. Schmid, Shurui Wang, Robert Halir, Alejandro Ortega-Moñux, Dan-Xia Xu, Laurent Vivien, Jean Lapointe, Siegfried Janz, and Milan Dado
Opt. Express 24(12) 12893-12904 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,” Opt. Express 15, 10091–10096 (2007).
    [Crossref] [PubMed]
  2. L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
    [Crossref]
  3. M. Streshinsky, R. Shi, A. Novack, R. T. P. Cher, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform,” Opt. Express 21, 31019–31028 (2013).
    [Crossref]
  4. W. Zhou, Z. Cheng, X. Sun, and H. K. Tsang, “Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler,” Opt. Lett. 43, 2985–2988 (2018).
    [Crossref] [PubMed]
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  6. Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
    [Crossref]
  7. S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
    [Crossref] [PubMed]
  8. M. Dizaji, C. Krückel, A. Fülöp, P. Andrekson, V. Torres-Company, and L. Chen, “Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing,” Opt. Express 25, 12100–12108 (2017).
    [Crossref] [PubMed]
  9. X. Liu, M. Pu, B. Zhou, C. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016).
    [Crossref] [PubMed]
  10. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
    [Crossref]
  11. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  12. P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
    [Crossref]
  13. C. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, 25827–25837 (2015).
    [Crossref] [PubMed]
  14. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
    [Crossref] [PubMed]
  15. H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22, 21800–21805 (2014).
    [Crossref] [PubMed]
  16. D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
    [Crossref]
  17. J. Savolainen, L. Grüner-Nielsen, P. Kristensen, and P. Balling, “Measurement of effective refractive-index differences in a few-mode fiber by axial fiber stretching,” Opt. Express 20, 18646–18651 (2012).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

M. Dizaji, C. Krückel, A. Fülöp, P. Andrekson, V. Torres-Company, and L. Chen, “Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing,” Opt. Express 25, 12100–12108 (2017).
[Crossref] [PubMed]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (1)

2013 (2)

M. Streshinsky, R. Shi, A. Novack, R. T. P. Cher, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform,” Opt. Express 21, 31019–31028 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (1)

2011 (2)

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[Crossref] [PubMed]

2010 (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

2007 (1)

2001 (1)

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Al Noman, A.

Andrekson, P.

Bache, M.

Baehr-Jones, T.

Baets, R.

Balling, P.

Bao, C.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Barbosa, F. A. S.

Bengtsson, J.

Bryant, A.

Cardenas, J.

Chen, G. F. R.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Chen, L.

Chen, X.

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
[Crossref]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[Crossref] [PubMed]

Cheng, Z.

Cher, R. T. P.

Danziger, Y.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Dizaji, M.

Dutt, A.

Fan, L.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Fülöp, A.

Gaeta, A. L.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Grüner-Nielsen, L.

Han, K.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

Hochberg, M.

Huang, Y.

Jaramillo-Villegas, J.

Jaramillo-Villegas, J. A.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Ji, X.

Kim, S.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

Klintberg, T.

Kristensen, P.

Krückel, C.

Leaird, D.

Leaird, D. E.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Lee, Y.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Li, C.

H. Zhang, C. Li, X. Tu, J. Song, H. Zhou, X. Luo, Y. Huang, M. Yu, and G. Lo, “Efficient silicon nitride grating coupler with distributed Bragg reflectors,” Opt. Express 22, 21800–21805 (2014).
[Crossref] [PubMed]

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
[Crossref]

Lim, A. E.-J.

Lipson, M.

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Liu, X.

Liu, Y.

Lo, G.

Lo, P. G.-Q.

Luo, X.

Menashe, D.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Metcalf, A.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Ng, D. K. T.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Niu, B.

Novack, A.

Okawachi, Y.

Pu, M.

Qi, M.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

Roberts, S. P.

Roelkens, G.

Savolainen, J.

Shi, R.

Song, J.

Streshinsky, M.

Sun, X.

Tan, D. T. H.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Tan, M. C.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Teng, M.

Torres-Company, V.

Tsang, H. K.

Tu, X.

Tur, M.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

Van Thourhout, D.

Varghese, L.

Wang, C.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

Wang, J.

Wang, P.

Weiner, A.

Weiner, A. M.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Xing, P.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Xu, L.

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
[Crossref]

Xuan, Y.

Xuan, Yi

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Xue, X.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P. Wang, K. Han, J. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171–1180 (2016).
[Crossref]

Yu, M.

Zhang, H.

Zhao, X.

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Zhou, B.

Zhou, H.

Zhou, W.

Electron. Lett. (1)

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Nat. Commun. (1)

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Yi Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 20, 37–40 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Opt. Commun. (1)

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun. 284, 2242–2244 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optica (2)

Sci. Rep. (1)

P. Xing, G. F. R. Chen, X. Zhao, D. K. T. Ng, M. C. Tan, and D. T. H. Tan, “Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band,” Sci. Rep. 7, 2045–2322 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Effective indices of fundamental and higher-order vertical TE modes at 1310 and 1550 nm as a function of semi-infinite SiN slab thickness. (b) Propagation constant β of fundamental and first-order TE mode at 1310 and 1550 nm as a function of semi-infinite SiN slab thickness.
Fig. 2
Fig. 2 Schematic of an SiN grating device used in simulations. λo,c are the corresponding free-space wavelengths in each band. Inset shows the fiber in air, inclined at an angle θ to the grating. The top-cladding nc is a 2 μm thick layer of SiO2. tSiN is the thickness of SiN film which is 700 nm here and tEt is the grating etch depth. W is the patch width.
Fig. 3
Fig. 3 Simulated fiber-to-chip coupling efficiency as a function of grating period Λ and etch depth tEt at 6° fiber inclination and 50% duty cycle at (a) 1310 nm and (b) 1550 nm.
Fig. 4
Fig. 4 Simulated spectral response as a function of grating period at 6° fiber inclination, 50% duty cycle and at an etch depth of 350 nm for (a) O-band and (b) C-band.
Fig. 5
Fig. 5 Coupling efficiencies in (a) O-band and (b) C-band at different fiber inclination angle θ for a 930 nm grating period and 50% duty cycle.
Fig. 6
Fig. 6 Coupling efficiencies at different duty cycles for (a) O-band and (b) C-band at 6° fiber inclination, and 930 nm grating period.
Fig. 7
Fig. 7 Coupling efficiency as a function of buried oxide (BOX) thickness at 930 nm period for both the bands.
Fig. 8
Fig. 8 Coupling comparison, for gratings with a bare Si substrate and those with a bottom DBR stack at period 930 nm, 6° inclination angle and 1.7 μm BOX thickness for (a) O-band and (b) C-band.
Fig. 9
Fig. 9 A SEM image after first layer pattering shown 350 nm etched grating in 700 nm thick SiN.
Fig. 10
Fig. 10 Schematic of experimental characterization setup of SiN dual-band coupler device under test (DUT).
Fig. 11
Fig. 11 Measured fiber-to-chip coupling efficiency (CE) of SiN couplers in (a) O-band and (b) C-band for different grating periods with 50% duty cycle and 5° fiber angle.
Fig. 12
Fig. 12 Measured fiber-to-chip coupling efficiency (CE) in (a) O-band and (b) C-band at period 930 nm and 50% duty cycle with different fiber inclination angles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 0 n g eff n c sin θ
n g eff = d c n etch T E 0 i + ( 1 d c ) n S i N T E 0 i

Metrics