Abstract

High-power, octave-spanning supercontinuum generation through pumping a highly nonlinear fiber with noise-like and well-defined optical pulses is investigated. A two-stage fiber amplifier, consisting of a pre-amplifier and a booster, is used to greatly enhance the average power of noise-like pump pulses from 14 mW to 13.1 W. Owing to the limited coupling efficiency, only a maximum optical power of 4.63 W is launched into the nonlinear fiber. As a result, a supercontinuum spectrum spanning from 940 to 2300 nm with an average power of 3.82 W is achieved with noise-like pump pulses. This is, to the best of our knowledge, the highest average power obtained over such an octave-spanning supercontinuum spectrum using noise-like pump pulses. Supercontinuum generation with a broader spectral range and a higher average power is feasible if the coupling efficiency of the pump pulse power launched into the nonlinear fiber is increased. For the purpose of comparison, well-defined pump pulses with a similar average power at a similar repetition rate are also investigated for similar octave-spanning supercontinuum generation. A supercontinuum spectrum spanning from 950 to 2500 nm with an average power of 3.62 W is obtained with well-defined pump pulses. Even though the spectrum of the resulting supercontinuum using the well-defined pump pulses is broader, a large portion of its optical power is concentrated around the center wavelength, leading to a lower spectral power density at other wavelengths; furthermore, a higher extent of spectral structure appears in its optical spectrum, resulting in a higher power variation among different wavelengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses

Shih-Shian Lin, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 22(4) 4152-4160 (2014)

High-power noise-like pulse generation using a 1.56-µm all-fiber laser system

Shih-Shian Lin, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 23(14) 18256-18268 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
    [Crossref] [PubMed]
  2. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28(8), 643–645 (2003).
    [Crossref] [PubMed]
  3. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
    [Crossref] [PubMed]
  4. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
    [Crossref]
  5. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33(1), 28–30 (2008).
    [Crossref] [PubMed]
  6. D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24(23), 26667–26677 (2016).
    [Crossref] [PubMed]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  8. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [Crossref]
  9. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  10. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  11. Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
    [Crossref]
  12. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
    [Crossref]
  13. J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-right fiber laser,” Laser Phys. 22(1), 221–226 (2012).
    [Crossref]
  14. A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
    [Crossref] [PubMed]
  15. S. S. Lin, S. K. Hwang, and J. M. Liu, “Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses,” Opt. Express 22(4), 4152–4160 (2014).
    [Crossref] [PubMed]
  16. H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
    [Crossref] [PubMed]
  17. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  18. D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
    [Crossref] [PubMed]
  19. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
    [Crossref] [PubMed]
  20. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
    [Crossref] [PubMed]
  21. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
    [Crossref] [PubMed]
  22. S. S. Lin, S. K. Hwang, and J. M. Liu, “High-power noise-like pulse generation using a 1.56-µm all-fiber laser system,” Opt. Express 23(14), 18256–18268 (2015).
    [Crossref] [PubMed]
  23. M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23(2), 138–140 (1998).
    [Crossref] [PubMed]
  24. S. Keren and M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26(6), 328–330 (2001).
    [Crossref] [PubMed]
  25. S. Keren, E. Brand, Y. Levi, B. Levit, and M. Horowitz, “Data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry,” Opt. Lett. 27(2), 125–127 (2002).
    [Crossref] [PubMed]
  26. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, “Measuring temperature profiles in high-power optical fiber components,” Appl. Opt. 42(13), 2284–2288 (2003).
    [Crossref] [PubMed]
  27. S. Keren, A. Rosenthal, and M. Horowitz, “Measuring the structure of highly reflecting fiber Bragg grating,” IEEE Photonics Technol. Lett. 15(4), 575–577 (2003).
    [Crossref]
  28. Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
    [Crossref]
  29. X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett. 37(12), 2292–2294 (2012).
    [Crossref] [PubMed]
  30. H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
    [Crossref]
  31. H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).
  32. X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
    [Crossref] [PubMed]

2018 (1)

2016 (2)

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24(23), 26667–26677 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

S. S. Lin, S. K. Hwang, and J. M. Liu, “Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses,” Opt. Express 22(4), 4152–4160 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

2010 (1)

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (3)

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (4)

2002 (2)

2001 (2)

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

1998 (1)

1997 (1)

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Aguergaray, C.

Alonzo, J.

Askins, C. G.

Bang, O.

Barad, Y.

Bise, R.

Brand, E.

Broderick, N. G. R.

Chai, L.

Chen, H.

H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
[Crossref] [PubMed]

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Chen, H. W.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, K. K.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, S.

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Chen, S. P.

H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
[Crossref] [PubMed]

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chen, Z.

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Chen, Z. L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Chudoba, C.

Chung, C. C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dai, N. L.

Dennis, M. L.

Dimarcello, F.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Duling, I. N.

Erkintalo, M.

Estudillo-Ayala, J. M.

J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-right fiber laser,” Laser Phys. 22(1), 221–226 (2012).
[Crossref]

Fang, X. H.

Feder, K.

Fini, J. M.

Fleming, J.

Friebele, E. J.

Fujimoto, J. G.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghanta, R. K.

Goloborodko, V.

Goto, T.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Grüner-Nielsen, L.

Guo, L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hartl, I.

Hernandez-Garcia, J. C.

J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-right fiber laser,” Laser Phys. 22(1), 221–226 (2012).
[Crossref]

Ho, D.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Horowitz, M.

Hou, J.

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
[Crossref] [PubMed]

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Hu, M. L.

Huang, L. L.

Hwang, S. K.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ivanenko, A.

Jain, D.

Jiang, Z. F.

Jørgensen, C.

Keren, S.

Kikuchi, K.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

Ko, T. H.

Kobtsev, S.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
[Crossref]

Kukarin, S.

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
[Crossref]

Latkin, A.

Lei, Y.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Leitenstorfer, A.

Levi, Y.

Levit, B.

Li, J.

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Li, J. Y.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett. 37(12), 2292–2294 (2012).
[Crossref] [PubMed]

Li, X. D.

Li, Z.

Lin, C. H.

Lin, S. S.

Lin, Y. L.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

Liu, J. M.

Liu, T.

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Lu, Q.

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Luo, J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Monberg, E.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Moselund, P. M.

Nagai, H.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Nicholson, J.

Nicholson, J. W.

Nishizawa, N.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ou, Y.

Ozeki, Y.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

Pan, C. L.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref] [PubMed]

Pottiez, O.

J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-right fiber laser,” Laser Phys. 22(1), 221–226 (2012).
[Crossref]

Putnam, M. A.

Qi, X.

Ranka, J. K.

Rosenthal, A.

V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, “Measuring temperature profiles in high-power optical fiber components,” Appl. Opt. 42(13), 2284–2288 (2003).
[Crossref] [PubMed]

S. Keren, A. Rosenthal, and M. Horowitz, “Measuring the structure of highly reflecting fiber Bragg grating,” IEEE Photonics Technol. Lett. 15(4), 575–577 (2003).
[Crossref]

Runge, A. F. J.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sidharthan, R.

Silberberg, Y.

Smirnov, S.

Smirnov, S. V.

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
[Crossref]

Stockert, T.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Takayanagi, J.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Takushima, Y.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

Tang, D.

Tashchilina, A. Y.

Tauser, F.

Tong, W. J.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Trevor, D. J.

Turitsyn, S.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Veng, T.

Wang, C.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

Wang, C. L.

Wang, C. Y.

Wang, N.

Wei, H.

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Wei, H. F.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Westbrook, P.

Westbrook, P. S.

Windeler, R. S.

Wisk, P.

Xue, P.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

Yablon, A.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Yan, M.

Yan, M. F.

Yan, P.

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Yan, P. G.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Yasunaka, K.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

Yoo, S.

Yoshida, M.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

You, Y. J.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref] [PubMed]

Zaytsev, A.

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref] [PubMed]

Zhang, G. L.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Zhang, X. B.

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Zhao, B.

Zhao, L.

Zheltikov, A. M.

Zhou, X.

H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
[Crossref] [PubMed]

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Zinth, W.

Appl. Opt. (1)

Electron. Lett. (2)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, “87 nm bandwidth noise-like pulse generation from erbium- doped fiber laser,” Electron. Lett. 41(7), 399–400 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

IEEE Photonics Technol. Lett. (2)

S. Keren, A. Rosenthal, and M. Horowitz, “Measuring the structure of highly reflecting fiber Bragg grating,” IEEE Photonics Technol. Lett. 15(4), 575–577 (2003).
[Crossref]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photonics Technol. Lett. 17(1), 37–39 (2005).
[Crossref]

Laser Phys. (2)

S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20(2), 375–378 (2010).
[Crossref]

J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, “Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-right fiber laser,” Laser Phys. 22(1), 221–226 (2012).
[Crossref]

Laser Phys. Lett. (2)

Y. J. You, C. Wang, Y. L. Lin, A. Zaytsev, P. Xue, and C. L. Pan, “Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses,” Laser Phys. Lett. 13(2), 025101 (2016).
[Crossref]

H. F. Wei, H. W. Chen, S. P. Chen, P. G. Yan, T. Liu, L. Guo, Y. Lei, Z. L. Chen, J. Li, X. B. Zhang, G. L. Zhang, J. Hou, W. J. Tong, J. Luo, J. Y. Li, and K. K. Chen, “A compact seven-core photonic crystal fiber supercontinuum source with 42.3W output power,” Laser Phys. Lett. 10(4), 045101 (2013).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (10)

J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
[Crossref] [PubMed]

S. S. Lin, S. K. Hwang, and J. M. Liu, “High-power noise-like pulse generation using a 1.56-µm all-fiber laser system,” Opt. Express 23(14), 18256–18268 (2015).
[Crossref] [PubMed]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref] [PubMed]

S. S. Lin, S. K. Hwang, and J. M. Liu, “Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses,” Opt. Express 22(4), 4152–4160 (2014).
[Crossref] [PubMed]

H. Chen, X. Zhou, S. P. Chen, Z. F. Jiang, and J. Hou, “Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator,” Opt. Express 23(26), 32909–32916 (2015).
[Crossref] [PubMed]

D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[Crossref] [PubMed]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[Crossref] [PubMed]

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
[Crossref] [PubMed]

F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
[Crossref] [PubMed]

D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24(23), 26667–26677 (2016).
[Crossref] [PubMed]

Opt. Lett. (10)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28(8), 643–645 (2003).
[Crossref] [PubMed]

J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33(1), 28–30 (2008).
[Crossref] [PubMed]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
[Crossref] [PubMed]

M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
[Crossref] [PubMed]

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askins, and E. J. Friebele, “Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23(2), 138–140 (1998).
[Crossref] [PubMed]

S. Keren and M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26(6), 328–330 (2001).
[Crossref] [PubMed]

S. Keren, E. Brand, Y. Levi, B. Levit, and M. Horowitz, “Data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry,” Opt. Lett. 27(2), 125–127 (2002).
[Crossref] [PubMed]

X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett. 37(12), 2292–2294 (2012).
[Crossref] [PubMed]

X. Qi, S. Chen, Z. Li, T. Liu, Y. Ou, N. Wang, and J. Hou, “High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm,” Opt. Lett. 43(5), 1019–1022 (2018).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of (a) supercontinuum generation system, (b) noise-like pulse laser, (c) well-defined pulse laser, (c) pre-amplifier, and (d) booster. HNLF, highly nonlinear fiber; PLD, pump laser diode; WDM, wavelength-division multiplexer; DCF, dispersion compensation fiber; PC, polarization controller; PDI, polarization-dependent isolator; PII, polarization-independent isolator; EDF, erbium-doped fiber; EYDF, erbium/ytterbium-codoped double-clad fiber; SMF, single-mode fiber; MFA, mode-field adaptor; PS, power stripper.
Fig. 2
Fig. 2 (a) Pulse train, (b) optical spectrum, and (c) autocorrelation trace of noise-like optical pulses from the output of the laser oscillator. The inset in (c) shows the magnification of the autocorrelation trace. Red curves in (c) and its inset are sech2 fitting of the pedestal and the peak, respectively.
Fig. 3
Fig. 3 (a) Pulse train, (b) optical spectrum, and (c) autocorrelation trace of well-defined optical pulses from the output of the laser oscillator. The red curve in (c) is sech2 fitting of the trace.
Fig. 4
Fig. 4 (a) Optical spectrum and (b) autocorrelation trace of noise-like optical pulses from the output of the pre-amplifier. The inset in (b) shows the magnification of the autocorrelation trace. Red curves in (b) and its inset are sech2 fitting of the pedestal and the peak, respectively.
Fig. 5
Fig. 5 (a) Optical spectrum and (b) autocorrelation trace of well-defined optical pulses from the output of the pre-amplifier. The red curve in (b) is sech2 fitting of the trace.
Fig. 6
Fig. 6 Optical spectra of supercontinua generated by using noise-like (black curve) and well-defined (red curve) pump pulses, respectively, after the first-stage amplification.
Fig. 7
Fig. 7 (a) Optical spectrum and (b) autocorrelation trace of noise-like optical pulses from the output of the booster pumped at 40 W. (c) Width of the peak (black symbols) and the pedestal (blue symbols) in the autocorrelation trace in terms of the pump power of the booster. The inset in (b) shows the magnification of the autocorrelation trace. Red curves in (b) and its inset are sech2 fitting of the pedestal and the peak, respectively.
Fig. 8
Fig. 8 (a) Optical spectrum and (b) autocorrelation trace of well-defined optical pulses from the output of the booster pumped at 40 W. (c) Width of the peak (black symbols) and the pedestal (blue symbols) in the autocorrelation trace in terms of the pump power of the booster. The inset in (b) shows the magnification of the autocorrelation trace. Red curves in (b) and its inset are sech2 fitting of the pedestal and the peak, respectively.
Fig. 9
Fig. 9 Optical spectra of supercontinua generated by using noise-like (black curves) and well- defined (red curves) pump pulses, respectively, at four different power levels, as indicated in the upper-right corner of all plots, through fixing the pump power of the booster at 12, 24, 32, and 40 W, respectively. NL, noise-like pump pulses; WD, well-defined pump pulses.

Metrics