Abstract

We proposed and experimentally demonstrated high-performance 1550- and 1310-nm silicon polarization splitter-rotators (PSRs) with optimized tapers. Each PSR consists of a particle swarm optimization (PSO)-based bi-level taper and shortcuts to an adiabaticity (STA)-based ridge-waveguide coupler. Ridge waveguides are introduced to increase the coupling coefficient of the STA-based coupler. The measured polarization conversion loss and polarization crosstalk are less than 0.74 and −20 dB, respectively, in the wavelength range of 1500–1600 nm for the 1550-nm PSR, and less than 1 and −23 dB, respectively, in the wavelength range of 1260–1340 nm for the 1310-nm PSR.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper

Jing Wang, Minghao Qi, Yi Xuan, Haiyang Huang, You Li, Ming Li, Xin Chen, Qi Jia, Zhen Sheng, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, and Fuwan Gan
Opt. Express 22(23) 27869-27879 (2014)

Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity

Tzu-Hsuan Pan and Shuo-Yen Tseng
Opt. Express 23(8) 10405-10412 (2015)

Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics

Hung-Ching Chung and Shuo-Yen Tseng
Opt. Express 26(8) 9655-9665 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  2. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  4. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  5. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
    [Crossref] [PubMed]
  6. Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
    [Crossref] [PubMed]
  7. K. Tan, Y. Huang, G.-Q. Lo, C. Yu, and C. Lee, “Experimental realization of an O-band compact polarization splitter and rotator,” Opt. Express 25(4), 3234–3241 (2017).
    [Crossref] [PubMed]
  8. L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
    [Crossref] [PubMed]
  9. X. Tu, M. Li, J. Xing, H. Fu, and D. Geng, “Compact PSR based on an asymmetric bi-level lateral taper in an adiabatic directional coupler,” J. Lightwave Technol. 34(3), 985–991 (2016).
    [Crossref]
  10. W. D. Sacher, B. Peng, J. C. Rosenberg, M. Khater, Y. Martin, J. S. Orcutt, Y. A. Vlasov, W. M. Green, and T. Barwicz, “An O-band polarization splitter-rotator in a CMOS-integrated silicon photonics platform,” in Frontiers in Optics 2016 (Optical Society of America, Rochester, New York, 2016), p. FTu2D.2.
  11. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  12. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  13. Y. Ding, H. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [Crossref] [PubMed]
  14. J. Wang, M. Qi, Y. Xuan, H. Huang, Y. Li, M. Li, X. Chen, Q. Jia, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, and F. Gan, “Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper,” Opt. Express 22(23), 27869–27879 (2014).
    [Crossref] [PubMed]
  15. W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [Crossref] [PubMed]
  16. W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G.-Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
    [Crossref] [PubMed]
  17. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  18. C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
    [Crossref]
  19. G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
    [Crossref]
  20. H.-C. Chung and S.-Y. Tseng, “Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics,” Opt. Express 26(8), 9655–9665 (2018).
    [Crossref] [PubMed]
  21. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
    [Crossref] [PubMed]
  22. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
    [Crossref] [PubMed]
  23. D. Guo and T. Chu, “Compact broadband silicon 3 dB coupler based on shortcuts to adiabaticity,” Opt. Lett. 43(19), 4795–4798 (2018).
    [Crossref] [PubMed]
  24. D. Guo and T. Chu, “Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity,” Opt. Express 25(8), 9160–9170 (2017).
    [Crossref] [PubMed]
  25. D. Guo and T. Chu, “Polarization splitter-rotators with optimized taper structures,” in 7th International Multidisciplinary Conference on Optofluidics (IMCO2017), Singapore, (2017).
  26. H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
    [Crossref] [PubMed]
  27. Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
    [Crossref]

2018 (2)

2017 (2)

2016 (3)

2015 (2)

L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
[Crossref] [PubMed]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

2014 (11)

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

J. Wang, M. Qi, Y. Xuan, H. Huang, Y. Li, M. Li, X. Chen, Q. Jia, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, and F. Gan, “Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper,” Opt. Express 22(23), 27869–27879 (2014).
[Crossref] [PubMed]

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G.-Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

2013 (1)

2011 (2)

2008 (1)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Baehr-Jones, T.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Barwicz, T.

Bowers, J. E.

Cheben, P.

Chen, G.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
[Crossref]

Chen, X.

Chiu, Y.-F.

Chu, T.

Chung, H.-C.

Dai, D.

Ding, L.

Ding, Y.

Fang, Q.

Fu, H.

Fukuda, H.

Gan, F.

Geng, D.

Guan, H.

Guo, D.

Guo-Qiang, L.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Hang, G.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Hochberg, M.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Huang, H.

Huang, Y.

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Itabashi, S.

Jia, Q.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Lee, C.

Li, M.

Li, W.

Li, Y.

Lim, A. E. J.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Lim, A. E.-J.

Liu, L.

Lo, G.-Q.

Ma, Y.

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Martínez-Garaot, S.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mikkelsen, J. C.

Muga, J. G.

Niu, B.

Novack, A.

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

Ou, H.

Peucheret, C.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Poon, J. K.

Poon, J. K. S.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Qing, F.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Romagnoli, M.

Ruizhi, S.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Sacher, W. D.

Schmid, J. H.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Sheng, Z.

Shi, R.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
[Crossref] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Sorianello, V.

Streshinsky, M.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

Sun, C.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
[Crossref]

Tan, K.

Tao, J.

Taylor, B. J.

Taylor, B. J. F.

Tseng, S.-Y.

Tsuchizawa, T.

Tu, X.

Wang, J.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, X.

Wangüemert-Pérez, J. G.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wen, R.-D.

Wu, A.

Wu, H.

Xing, J.

Xiong, Y.

Xu, D.-X.

Xuan, Y.

Yamada, K.

Yang, L.

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Yang, S.

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

Ye, W. N.

Yu, C.

Yu, Y.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
[Crossref]

Yvind, K.

Zhang, X.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

Zou, S.

IEEE Photonics Technol. Lett. (2)

C. Sun, Y. Yu, G. Chen, and X. Zhang, “A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers,” IEEE Photonics Technol. Lett. 28(20), 2253–2256 (2016).
[Crossref]

G. Hang, A. Novack, M. Streshinsky, S. Ruizhi, L. Yang, F. Qing, A. E. J. Lim, L. Guo-Qiang, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photonics Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ×2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (13)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G.-Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

J. Wang, M. Qi, Y. Xuan, H. Huang, Y. Li, M. Li, X. Chen, Q. Jia, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, and F. Gan, “Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper,” Opt. Express 22(23), 27869–27879 (2014).
[Crossref] [PubMed]

L. Socci, V. Sorianello, and M. Romagnoli, “300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking,” Opt. Express 23(15), 19261–19271 (2015).
[Crossref] [PubMed]

K. Tan, Y. Huang, G.-Q. Lo, C. Yu, and C. Lee, “Experimental realization of an O-band compact polarization splitter and rotator,” Opt. Express 25(4), 3234–3241 (2017).
[Crossref] [PubMed]

D. Guo and T. Chu, “Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity,” Opt. Express 25(8), 9160–9170 (2017).
[Crossref] [PubMed]

H.-C. Chung and S.-Y. Tseng, “Ultrashort and broadband silicon polarization splitter-rotator using fast quasiadiabatic dynamics,” Opt. Express 26(8), 9655–9665 (2018).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. SPIE (1)

Y. Zhang, M. Streshinsky, A. Novack, Y. Ma, S. Yang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A compact and low-loss silicon waveguide crossing for O-band optical interconnect,” Proc. SPIE 8990, 899002 (2014).
[Crossref]

Other (2)

W. D. Sacher, B. Peng, J. C. Rosenberg, M. Khater, Y. Martin, J. S. Orcutt, Y. A. Vlasov, W. M. Green, and T. Barwicz, “An O-band polarization splitter-rotator in a CMOS-integrated silicon photonics platform,” in Frontiers in Optics 2016 (Optical Society of America, Rochester, New York, 2016), p. FTu2D.2.

D. Guo and T. Chu, “Polarization splitter-rotators with optimized taper structures,” in 7th International Multidisciplinary Conference on Optofluidics (IMCO2017), Singapore, (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the proposed PSR. W1, W2…Wn mean the waveguide widths of the PSO-based taper. Wa(z) means the access waveguide width. Wb means the bus waveguide width. D(z) means the center-separation between access and bus waveguides.
Fig. 2
Fig. 2 (a) Schematic of the PSO-optimized bi-level taper. (b) Simulated TM0-TE1 conversion efficiency for the 1550-nm device. (c) Simulated TM0-TE1 conversion efficiency for the 1310-nm device. The inset pictures show the power distribution when TM0 is input.
Fig. 3
Fig. 3 (a) Derived parameters of the 1550-nm mode demultiplexer. (b) Derived parameters of the 1310-nm mode demultiplexer. (c) FDTD simulation results of the 1550-nm mode demultiplexer. (d) FDTD simulation results of the 1310-nm mode demultiplexer.
Fig. 4
Fig. 4 FDTD simulation results of the total 1550-nm PSR with optimized parameters. (a) TE0 input. (b) TM0 input. The inset pictures display the power distribution at 1550 nm.
Fig. 5
Fig. 5 FDTD simulation results of the total 1310-nm PSR with optimized parameters. (a) TE0 input. (b) TM0 input. The inset pictures display the power distribution at 1310 nm.
Fig. 6
Fig. 6 Microscopic and scanning electron microscope pictures of the fabricated PSR. (a) 1550-nm PSR. (b) 1310-nm PSR.
Fig. 7
Fig. 7 Measured results of the 1550-nm PSR; (a) four TE-type reference links; (b) four TM-type reference links; (c) PCL versus wavelength; (d) polarization CT versus wavelength.
Fig. 8
Fig. 8 Measured results of the 1310-nm PSR; (a) two TE-type reference links; (b) two TM-type reference links; (c) PCL versus wavelength; (d) polarization CT versus wavelength.
Fig. 9
Fig. 9 Measured PCLs of the 1550-nm PSR when the variation of waveguide separation D is (a) 10 nm, (c) 20 nm, (e) −10 nm, and (g) −20 nm, when the coupling length of the TE0–TE1 demultiplexer is (i) 70 μm and (k) 90 μm. Measured CTs when the variation of waveguide separation D is (b) 10 nm, (d) 20 nm, (f) −10 nm, and (h) −20 nm, when the coupling length of the TE0–TE1 demultiplexer is (j) 70 μm and (l) 90 μm.
Fig. 10
Fig. 10 Simulated TM0–TE0 PCL for the possible fabrication errors of (a) waveguide separation, (b) slab-layer height, (c) access-waveguide width, and (d) bus-waveguide width.
Fig. 11
Fig. 11 (a) Simulated TE1-TE0 loss of the demultiplexer when the slab height is 70 nm. Simulated TM0-TE1 loss of the bi-level taper for the possible fabrication errors of (b) slab-layer height, (c) waveguide width, and (d) slab waveguide width.

Tables (5)

Tables Icon

Table 1 Parameters of the 1550-nm bi-level taper (nm).

Tables Icon

Table 2 Parameters of the 1310-nm bi-level taper (nm).

Tables Icon

Table 3 Values of parameters for the 1550-nm and 1310-nm mode demultiplexer.

Tables Icon

Table 4 Comparison of the experimentally demonstrated 1550-nm PSR.

Tables Icon

Table 5 Comparison of the experimentally demonstrated 1310-nm PSR.

Metrics