Abstract

As a diagonal projection of the traditional generalized two-dimensional correlation function, a one-dimensional second-order correlation function in the frequency domain is introduced. This function was applied in coherent Stokes and anti-Stokes Raman scattering (CSRS/CARS) processes. The experiment was performed by a high-average-power fiber amplified femtosecond laser system with a 1 MHz repetition rate. To measure spectral noise fluctuations, sets of 30 sample spectra of pyridine solution were recorded in the fast sequence mode. Experimental design combined with the use of appropriate notch filters allowed for simultaneous recording of the CARS/CSRS spectra. Asymmetry in the noise fluctuations between CARS and CSRS processes is revealed by both one- and two-dimensional (synchronous as well as asynchronous) noise correlation calculations, demonstrating a potential for a high-resolution spectroscopic tool.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement

Dmitry Pestov, Gombojav O. Ariunbold, Xi Wang, Robert K. Murawski, Vladimir A. Sautenkov, Alexei V. Sokolov, and Marlan O. Scully
Opt. Lett. 32(12) 1725-1727 (2007)

Single-beam phase-modulated stimulated Raman scattering microscopy with spectrally focused detection

Terumasa Ito, Yuki Obara, and Kazuhiko Misawa
J. Opt. Soc. Am. B 34(5) 1004-1015 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Noda, “Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy,” Appl. Spectrosc. 47, 1329–1336 (1993).
    [Crossref]
  2. K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
    [Crossref] [PubMed]
  3. A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
    [Crossref]
  4. I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 54, 236A–248A (2000).
    [Crossref]
  5. L. Ma, V. Sikirzhytski, Z. Hong, I. K. Lednev, and S. A. Ashera, “Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 67, 283–290 (2013).
    [Crossref] [PubMed]
  6. I. Noda, “Generalized two-dimensional correlation spectroscopy,” in Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier, 2009), pp. 367.
    [Crossref]
  7. Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
    [Crossref]
  8. I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc. 36, 143–165 (2004).
    [Crossref]
  9. I. Noda, “Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins,” Spectrochim. Acta A 187, 119–129 (2017).
    [Crossref]
  10. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
    [Crossref]
  11. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
    [Crossref] [PubMed]
  12. H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37, 411–415 (2006).
    [Crossref]
  13. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
    [Crossref]
  14. G. O. Ariunbold and N. Altangerel, “Coherent anti-Stokes Raman spectroscopy: understanding the essentials—a review,” Coherent Opt. Phenom. 3, 6 (2016).
  15. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
    [Crossref] [PubMed]
  16. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
    [Crossref]
  17. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).
  18. C. H. Camp and M. Cicerone, “Chemically selective bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  19. C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
    [Crossref]
  20. K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
    [Crossref]
  21. D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
    [Crossref] [PubMed]
  22. G. O. Ariunbold and N. Altangerel, “Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses,” J. Raman Spectrosc. 48, 104–107 (2017).
    [Crossref]
  23. S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
    [Crossref]
  24. M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
    [Crossref] [PubMed]
  25. M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
    [Crossref]
  26. L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
    [Crossref]
  27. Z. W. Li, C. Radzewicz, and M. G. Raymer, “Phase cross correlation in the coherent Raman process,” Opt. Lett. 13, 491–493 (1988).
    [Crossref] [PubMed]
  28. J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
    [Crossref]
  29. G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
    [Crossref]
  30. G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
    [Crossref]
  31. I. Noda, “Determination of two-dimensional correlation spectra using the Hilbert transform,” Appl. Spectrosc. 54, 994–999 (2000).
    [Crossref]

2017 (2)

I. Noda, “Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins,” Spectrochim. Acta A 187, 119–129 (2017).
[Crossref]

G. O. Ariunbold and N. Altangerel, “Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses,” J. Raman Spectrosc. 48, 104–107 (2017).
[Crossref]

2016 (3)

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

G. O. Ariunbold and N. Altangerel, “Coherent anti-Stokes Raman spectroscopy: understanding the essentials—a review,” Coherent Opt. Phenom. 3, 6 (2016).

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

2015 (1)

C. H. Camp and M. Cicerone, “Chemically selective bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

2013 (3)

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

L. Ma, V. Sikirzhytski, Z. Hong, I. K. Lednev, and S. A. Ashera, “Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 67, 283–290 (2013).
[Crossref] [PubMed]

2010 (3)

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[Crossref]

2008 (1)

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

2007 (3)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

2006 (2)

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37, 411–415 (2006).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

2004 (2)

I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc. 36, 143–165 (2004).
[Crossref]

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

2002 (1)

J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
[Crossref]

2000 (3)

I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 54, 236A–248A (2000).
[Crossref]

I. Noda, “Determination of two-dimensional correlation spectra using the Hilbert transform,” Appl. Spectrosc. 54, 994–999 (2000).
[Crossref]

Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
[Crossref]

1997 (2)

A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
[Crossref]

M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
[Crossref]

1993 (1)

1988 (1)

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[Crossref]

Acharya, U. R.

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

Agarwal, G. S.

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

Albrecht, A. C.

M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
[Crossref]

Altangerel, N.

G. O. Ariunbold and N. Altangerel, “Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses,” J. Raman Spectrosc. 48, 104–107 (2017).
[Crossref]

G. O. Ariunbold and N. Altangerel, “Coherent anti-Stokes Raman spectroscopy: understanding the essentials—a review,” Coherent Opt. Phenom. 3, 6 (2016).

Ariunbold, G. O.

G. O. Ariunbold and N. Altangerel, “Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses,” J. Raman Spectrosc. 48, 104–107 (2017).
[Crossref]

G. O. Ariunbold and N. Altangerel, “Coherent anti-Stokes Raman spectroscopy: understanding the essentials—a review,” Coherent Opt. Phenom. 3, 6 (2016).

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

Ashera, S. A.

Bito, K.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Booth, E. C.

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

Camp, C. H.

C. H. Camp and M. Cicerone, “Chemically selective bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

Chandran, V.

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

Cheng, J.-X.

J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
[Crossref]

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

Chua, K. C.

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

Cicerone, M.

C. H. Camp and M. Cicerone, “Chemically selective bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Couderc, V.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Czarnik-Matusewicz, B.

Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
[Crossref]

Dogariu, A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

Dowrey, A. E.

Giannakis, G. B.

A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
[Crossref]

Gord, J. R.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[Crossref]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37, 411–415 (2006).
[Crossref]

Hamaguchi, H.-O

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Hong, Z.

Hsu, P. S.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

Huang, Yu.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

Jiang, N.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

Jung, Y. M.

Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
[Crossref]

Kano, H.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37, 411–415 (2006).
[Crossref]

Krafft, C.

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Kulatilaka, W. D.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

Lednev, I. K.

Leproux, P.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Li, Z. W.

Lim, C. M.

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

Ma, L.

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[Crossref]

Marcott, C.

Meyer, T.

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Murawski, R. K.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

Noda, I.

I. Noda, “Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins,” Spectrochim. Acta A 187, 119–129 (2017).
[Crossref]

I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc. 36, 143–165 (2004).
[Crossref]

I. Noda, “Determination of two-dimensional correlation spectra using the Hilbert transform,” Appl. Spectrosc. 54, 994–999 (2000).
[Crossref]

I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 54, 236A–248A (2000).
[Crossref]

I. Noda, “Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy,” Appl. Spectrosc. 47, 1329–1336 (1993).
[Crossref]

I. Noda, “Generalized two-dimensional correlation spectroscopy,” in Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier, 2009), pp. 367.
[Crossref]

Okuno, M.

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Ozaki, Y.

Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
[Crossref]

I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc. 54, 236A–248A (2000).
[Crossref]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[Crossref]

Pestov, D.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

Popp, J.

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Potma, E. O.

J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
[Crossref]

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

Rabasovic, M. D.

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

Radzewicz, C.

Raymer, M. G.

Rostovtsev, Yu. V.

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

Roy, S.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[Crossref]

Sautenkov, V. A.

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

Schie, I. W.

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Schmidth, M.

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

Scully, M. O.

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

Sikirzhytski, V.

Sisamakis, E.

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

Sokolov, A. V.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

Stauffer, H. U.

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

Stimson, M. J.

M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
[Crossref]

Story, G. M.

Swamia, A.

A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
[Crossref]

Ta, T.

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[Crossref]

Ulness, D. J.

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
[Crossref]

Walther, H.

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

Wang, X.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32, 1725–1727 (2007).
[Crossref] [PubMed]

Wang, Z.

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

Weisel, L. R.

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

Wennmalm, S.

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

Widengren, J.

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

Xie, S. X.

J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

Zhou, G.

A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
[Crossref]

Appl. Spectrosc. (4)

Chem. Phys. (1)

K. Bito, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O Hamaguchi, “Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source,” Chem. Phys. 419, 156–162 (2013).
[Crossref]

Chem. Soc. Rev. (1)

C. Krafft, I. W. Schie, T. Meyer, M. Schmidth, and J. Popp, “Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications,” Chem. Soc. Rev. 45, 1819–1849 (2016).
[Crossref]

ChemPhysChem (1)

M. D. Rabasovic, E. Sisamakis, S. Wennmalm, and J. Widengren, “Label-free fluctuation spectroscopy based on coherent anti-Stokes Raman scattering from bulk water molecules,” ChemPhysChem 17, 1025–1033 (2016).
[Crossref] [PubMed]

Coherent Opt. Phenom. (1)

G. O. Ariunbold and N. Altangerel, “Coherent anti-Stokes Raman spectroscopy: understanding the essentials—a review,” Coherent Opt. Phenom. 3, 6 (2016).

J. Chem. Phys. (2)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency-and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 44502 (2006).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct measurements of collisionally broadened Raman linewidths of CO2 S-branch transitions,” J. Chem. Phys. 138, 024201 (2013).
[Crossref]

J. Mod. Opt. (1)

G. O. Ariunbold, Yu. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt. 57, 1417–1427 (2010).
[Crossref]

J. Phys. Chem. A (2)

G. O. Ariunbold, G. S. Agarwal, Z. Wang, M. O. Scully, and H. Walther, “Nanosecond dynamics of single-molecule fluorescence resonance energy transfer,” J. Phys. Chem. A 108, 2402–2404 (2004).
[Crossref]

J.-X. Cheng, E. O. Potma, and S. X. Xie, “Coherent anti-Stokes Raman scattering correlation spectroscopy: probing dynamical processes with chemical selectivity,” J. Phys. Chem. A 106, 8561–8568 (2002).
[Crossref]

J. Phys. Chem. B (1)

Y. M. Jung, B. Czarnik-Matusewicz, and Y. Ozaki, “Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heteroscpectral correlation studies of secondary structure of α-lactoglobulin in buffer solutions,” J. Phys. Chem. B 104, 7812–7817 (2000).
[Crossref]

J. Raman Spectrosc. (4)

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37, 411–415 (2006).
[Crossref]

M. J. Stimson, D. J. Ulness, and A. C. Albrecht, “Time-resolved coherent Raman spectroscopy controlled by spectrally tailored noisy light,” J. Raman Spectrosc. 28, 579–587 (1997).
[Crossref]

L. R. Weisel, T. Ta, E. C. Booth, and D. J. Ulness, “Polarization coherent anti-stokes Raman scattering using noisy light,” J. Raman Spectrosc. 38, 11–20 (2007).
[Crossref]

G. O. Ariunbold and N. Altangerel, “Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses,” J. Raman Spectrosc. 48, 104–107 (2017).
[Crossref]

Med. Eng. Phys. (1)

K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, “Application of higher order statistics/spectra in biomedical signals: a review,” Med. Eng. Phys. 32, 679–689 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. H. Camp and M. Cicerone, “Chemically selective bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 105, 422–427 (2008).
[Crossref] [PubMed]

Prog. Energ. Combust. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36, 280–306 (2010).
[Crossref]

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Yu. V. Rostovtsev, A. Dogariu, Yu. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265–268 (2007).
[Crossref] [PubMed]

Sig. Process. (1)

A. Swamia, G. B. Giannakis, and G. Zhou, “Bibliography on higher-order statistics,” Sig. Process. 60, 65–126 (1997).
[Crossref]

Spectrochim. Acta A (1)

I. Noda, “Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins,” Spectrochim. Acta A 187, 119–129 (2017).
[Crossref]

Vib. Spectrosc. (1)

I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc. 36, 143–165 (2004).
[Crossref]

Other (2)

I. Noda, “Generalized two-dimensional correlation spectroscopy,” in Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier, 2009), pp. 367.
[Crossref]

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup: A fs laser with the NOPA produces broadband pump (900 nm), Stokes (1040 nm) and narrowband shaped probe (520 nm) pulses that are temporally and spatially overlapped in pyridine solution. The generated CSRS/CARS signals are recorded simultaneously with a spectrograph with EMCCD.
Fig. 2
Fig. 2 Spectrograms for the hybrid fs/ps coherent Raman spectroscopy: (A) CARS mean spectrum and (C) its standard deviation as functions of probe delay τ and anti-Stokes Raman shift ν1; (B) CSRS mean spectrum and (D) its standard deviation as functions of τ and Stokes Raman shift ν2.
Fig. 3
Fig. 3 Spectral noise correlations: (A) CARS and (B) CSRS noise auto-correlations as functions of τ and differences Δν1 and Δν2, respectively; (C,D) noise cross-correlations as functions of τ and relative differences |ν1| − ν2 and ν2 − |ν1|, respectively.
Fig. 4
Fig. 4 Selected samples for four different delay positions of probe: (A,B,C) at τ = −2 ps; (D,E,F) at τ = 0.4 ps; (G,H,I) at τ = 0.8 ps and (J,K,L) at τ = 10 ps. First column (A,D,G,J) for CARS (black curves and error bars) and CSRS (red curves and error bars) spectra with the standard deviations; second column (B,E,H,K) for auto-correlations for CARS (black curves) and CSRS (red curves) Raman noise spectra; third column (C,F,I,L) for CARS-CSRS noise spectral cross-correlations.
Fig. 5
Fig. 5 Generalized two-dimensional spectral noise correlations for two different delay positions of probe: (A to F) at τ = 0.4 ps and (G to L) at τ = 0.8 ps where (A,B,C,G,H,I) for the synchronous and (D,E,F,J,K,L) asynchronous 2D spectral noise correlations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G I , I ( 2 ) ( Δ v ) = { δ I ( v ) δ I ( v Δ v ) }
Φ I , I sync ( v , v ) = { δ I ( v ) δ I ( v ) } = 1 M j = 1 M δ I j ( v ) δ I j ( v )
Ψ I , I async ( v , v ) = 1 M j = 1 M δ I j ( v ) k = 1 M 𝒩 j k δ I k ( v )

Metrics