Abstract

Plasmonic groove structures, which are widely known for their absorbent properties of light, are numerically investigated and optimized. Genetic algorithms have been successfully used to aid in the design of two-dimensional high efficiency wide-angle plasmonic groove absorbers for visible wavelengths. We demonstrate that the genetic algorithm is a powerful and flexible evolutionary optimization tool, able to handle high challenging design tasks by optimizing several complex problems currently of high interest to the optics and photonics community. The novel proposed periodic groove structure exhibits absorption above 90% for ultra-broadband wavelengths ranging from 300 to 700 nm. The resonant modes induce localized zero wavevector plasmon polaritons in the metallic material, which favors absorption and may also enhance non-linear optical processes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mammographic texture synthesis: second-generation clustered lumpy backgrounds using a genetic algorithm

Cyril Castella, Karen Kinkel, François Descombes, Miguel P. Eckstein, Pierre-Edouard Sottas, Francis R. Verdun, and François O. Bochud
Opt. Express 16(11) 7595-7607 (2008)

Pulse retrieval from interferometric autocorrelation measurement by use of the population-split genetic algorithm

Ching-Wei Chen, Jung Y. Huang, and Ci-Ling Pan
Opt. Express 14(22) 10930-10938 (2006)

Multiplexed computer-generated holograms with polygonal-aperture layouts optimized by genetic algorithm

Jean-Numa Gillet and Yunlong Sheng
Appl. Opt. 42(20) 4156-4165 (2003)

References

  • View by:
  • |
  • |
  • |

  1. L. Bourke and R. J. Blaikie, “Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures,” J. Opt. 19(9), 095003 (2017).
    [Crossref]
  2. D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm,” Appl. Opt. 49(7), A30–A35 (2010).
    [Crossref] [PubMed]
  3. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
    [Crossref] [PubMed]
  4. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
    [Crossref]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  6. F. Cheng, X. Yang, and J. Gao, “Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers,” Opt. Lett. 39(11), 3185–3188 (2014).
    [Crossref] [PubMed]
  7. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  9. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3(10), 1275–1285 (2012).
    [Crossref] [PubMed]
  10. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  11. Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
    [Crossref]
  12. Z. Michalewicz and S. J. Hartley, Genetic algorithms + data structures = evolution programs (Springer, 1996).
  13. C. R. Houck, J. Joines, and M. G. Kay, “A genetic algorithm for function optimization: a Matlab implementation,” NCSU-IE TR (1995).
  14. C. M. Anderson-Cook, Practical Genetic Algorithms (Taylor & Francis, 2005).
  15. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
    [Crossref] [PubMed]
  16. E. Kotlikov, A. Tropin, and V. Shalin, “Designing optical coatings by means of genetic algorithms,” J. Opt. Technol. 81(11), 692–696 (2014).
    [Crossref]
  17. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  18. S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
    [Crossref] [PubMed]
  19. K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32(4), 595–600 (2015).
    [Crossref]

2017 (1)

L. Bourke and R. J. Blaikie, “Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures,” J. Opt. 19(9), 095003 (2017).
[Crossref]

2015 (2)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32(4), 595–600 (2015).
[Crossref]

2014 (5)

2012 (4)

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[Crossref] [PubMed]

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3(10), 1275–1285 (2012).
[Crossref] [PubMed]

2010 (3)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm,” Appl. Opt. 49(7), A30–A35 (2010).
[Crossref] [PubMed]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Abram, R.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Apell, S. P.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3(10), 1275–1285 (2012).
[Crossref] [PubMed]

Aydin, K.

Bai, J.

Blaikie, R. J.

L. Bourke and R. J. Blaikie, “Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures,” J. Opt. 19(9), 095003 (2017).
[Crossref]

Bourke, L.

L. Bourke and R. J. Blaikie, “Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures,” J. Opt. 19(9), 095003 (2017).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Butun, S.

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Chamberlain, J.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Cheng, F.

Choi, D.

Cui, Y.

Dal Negro, L.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Fan, L.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Fang, N. X.

Fang, Z.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Forestiere, C.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Fung, K. H.

Gao, J.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hägglund, C.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3(10), 1275–1285 (2012).
[Crossref] [PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, S.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, S.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Jung, J.

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kavokin, A.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kivshar, Y. S.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
[Crossref]

Kotlikov, E.

Le, K. Q.

Lee, B.

Lee, I.-M.

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Lim, Y.

Liu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
[Crossref]

Mirzaei, A.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
[Crossref]

Nordlander, P.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Roh, S.

Shadrivov, I. V.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
[Crossref]

Shalin, V.

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Tropin, A.

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, Y.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Xu, J.

Yang, X.

Yu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

Zhen, Y.-R.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, X.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Superscattering of light optimized by a genetic algorithm,” Appl. Phys. Lett. 105(1), 0111091 (2014).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonicmetamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Mater. Chem. (1)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, and et al.., “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. 17, 4222–4226 (2015).

J. Opt. (1)

L. Bourke and R. J. Blaikie, “Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures,” J. Opt. 19(9), 095003 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Phys. Chem. Lett. (1)

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3(10), 1275–1285 (2012).
[Crossref] [PubMed]

Nano Lett. (3)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonicnanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 85(24), 245401 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Other (3)

Z. Michalewicz and S. J. Hartley, Genetic algorithms + data structures = evolution programs (Springer, 1996).

C. R. Houck, J. Joines, and M. G. Kay, “A genetic algorithm for function optimization: a Matlab implementation,” NCSU-IE TR (1995).

C. M. Anderson-Cook, Practical Genetic Algorithms (Taylor & Francis, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Block diagram of the genetic algorithm.
Fig. 2
Fig. 2 Base structure used for evolution with genetic algorithm.
Fig. 3
Fig. 3 Infrared absorbance spectra with peaks at 1530nm and 2940nm of the structure proposed in the literature [15], in dashed blue, and from the structure simulated in this work in continuous red. The metal used was silver and the parameters were P = 1100nm, w1 = 200nm, h1 = 300nm, w2 = 50nm and h2 = 350.
Fig. 4
Fig. 4 (a) Absorbance spectrum of (c) best structure with peaks at 1530nm and 2940nm, obtained by genetic algorithm search (b) with fitness evolution for 150 generations. The obtained absorption spectra is displayed in blue and the target curve is displayed in red. The distribution profiles (d) of the magnetic field and (e) of the electric field at wavelength of 1580nm indicates the presence of resonance in the structure’s cavities.
Fig. 5
Fig. 5 Absorbance spectrum of (c) best structure for maximum absorbance over the visible band obtained by genetic algorithm search (b) with fitness evolution evaluated for 150 generations. The simulated absorption coefficient is displayed in blue and the objective absorption is displayed in red. The magnetic field distribution profiles for (d) TM mode and for (e) TE mode indicate the presence of resonance in the structure’s cavities.
Fig. 6
Fig. 6 Absorbance comparison between grooved (orange triangles) and slabbed structures (blue dots). The increased absorbance factor is shown in circled blue line. The optimized grooved structure has demonstrated absorbance improvement from 50% to 170% when compared to a slab of the same material.
Fig. 7
Fig. 7 Absorbance spectrum as a function of the incident angles on the grooved optimized structure. The material slab for normal incidence is also shown as reference.
Fig. 8
Fig. 8 (a) Absorbance spectrum of (c) best structure for low pass filtering with 600nm as cutoff wavelength obtained by genetic algorithm search (b) with fitness evaluated for 150 generations. The simulated absorbance is displayed in blue and the target absorption is displayed in red. The magnetic field distribution profiles at the peak absorbance of 98% for (d) TM mode and for (e) TE mode indicate the presence of resonance in the structure’s cavities.

Tables (1)

Tables Icon

Table 1 - Defined Limits for the Values of the Genes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S= i=1 i=7 | g i former g i tested | g i former : Gene i of a former specimen g i tested : Gene i of the tested specimin
F( X )=1 1 n i n ( x ideal,i x i ) 2

Metrics